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Introduction to

Finite Element Analysis Using MATLAB® and Abaqus
“A very good introduction to the finite element method with a balanced treatment of 
theory and implementation.”

— F. Albermani, Reader in Structural Engineering,
The University of Queensland, Australia

There are some books that target the theory of the finite element, while others focus 
on the programming side of things. Introduction to Finite Element Analysis Using 
MATLAB® and Abaqus accomplishes both. This book teaches the first principles of 
the finite element method. It presents the theory of the finite element method while 
maintaining a balance between its mathematical formulation, programming implemen-
tation, and application using commercial software. The computer implementation is 
carried out using MATLAB, while the practical applications are carried out in both 
MATLAB and Abaqus. MATLAB is a high-level language specially designed for dealing 
with matrices, making it particularly suited for programming the finite element meth-
od, while Abaqus is a suite of commercial finite element software.

Introduction to Finite Element Analysis Using MATLAB® and Abaqus introduces 
and explains theory in each chapter, and provides corresponding examples. It offers 
introductory notes and provides matrix structural analysis for trusses, beams, and 
frames. The book examines the theories of stress and strain and the relationships be-
tween them. The author then covers weighted residual methods and finite element ap-
proximation and numerical integration. He presents the finite element formulation for 
plane stress/strain problems, introduces axisymmetric problems, and highlights the 
theory of plates. The text supplies step-by-step procedures for solving problems with 
Abaqus interactive and keyword editions. The described procedures are implemented 
as MATLAB codes, and Abaqus files can be found on the CRC Press website.
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Preface
The advent of the digital computer has revolutionized engineering curricula. In this day and age,
the analysis of all but the simplest problem is carried out with the aid of a computer program
that not only speeds up calculations but also allows the display of results in fancy graphics. For
instance, when graduate engineers enter the design office, they encounter advanced commercial
finite element software whose capabilities, and the theories behind their development, are far more
superior to the training they have received during their university studies. These packages also come
with a graphical user interface (GUI). Most of the time, this is the only component the user will
interact with, and learning how to use the software is often a matter of trial and error assisted by the
documentation that accompanies the software. However, proficiency in using the GUI is by no means
related to the accuracy of the results. The latter depends very much on a deep understanding of the
mathematics governing the theory. So, what is to be taught? This is the challenge facing experts and
educators in engineering. Should only the theory be taught, with the practical aspects to be “picked
up” later? Or, on the other hand, should the emphasis be on more “hands-on” applications using
computer software at the expense of theory? The many textbooks that describe the theory of the
finite element and/or its engineering applications fall into one of the following two categories: those
that deal with the theory, assuming that the reader has access to some sort of software, and those
that deal with the programming aspect, assuming that the reader has some theoretical knowledge
of the method.

The theoretical approach is beneficial to students in the long term as it provides them with a
deeper understanding of the mathematics behind the development of the finite element method. It
also helps them prepare for postgraduate studies. However, it leaves very little time for practical
applications, and as such it is not favored by employers, as they have to provide extra training for
graduates in solving real-life problems. In addition, from my personal experience, it is often less
attractive to students as it involves a lot of mathematics such as differential equations, matrix algebra,
and advanced calculus. Indeed, finite element analysis subjects are usually taught in the two later
years of the engineering syllabus, and at these later stages in their degree, most students expect that
they have completed their studies in mathematics in the first two years. The “hands-on” approach, on
the other hand, makes extensive use of the availability of computer facilities. Real-life problems are
usually used as examples. It is very popular with students as it helps them solve problems quickly
and efficiently with the results presented in attractive graphics. Students become experts at using the
pre- and postprocessor abilities of the software and usually claim competency with a given computer
package, which employers look well upon. However, this approach gives students a false sense of
achievement. When faced with a novel problem, they usually do not know how to choose a suitable
model and how to check the accuracy and the validity of the answers. In addition, modern packages
have abilities beyond the student knowledge and experience. This is a serious cause for concern. In
addition, given the many available computer software, it is also very unlikely that after graduating a
student will use the same package on which he or she was trained.

The aim of this book, therefore, is to bridge this gap. It introduces the theory of the finite element
method while keeping a balanced approach between its mathematical formulation, programming
implementation and as its application using commercial software. The computer implementation is
carried out using MATLAB�, while the practical applications are carried out in both MATLAB and
Abaqus. MATLAB is a high-level language specially designed for dealing with matrices, making
it particularly suited for programming the finite element method. In addition, it also allows the
reader to focus on the finite element method by alleviating the programming burden. Experience
has shown that books that include programming examples that can be implemented are of benefit
to beginners. This book also includes detailed step-by-step procedures for solving problems with
Abaqus interactive and keyword editions. Abaqus is one of the leading finite element packages and

xxvii
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has much operational and verification experience to back it up, notwithstanding the quality of the
pre- and postprocessing capabilities.

Finally, if you want to understand the introductory theory of the finite element method, to program
it in MATLAB, and/or to get started with Abaqus, then this book is for you.

ABAQUS is a registered trade mark of Dassault Systèmes. For product information, please contact:
Web: www.3ds.com

MATLAB� is a registered trademark of The MathWorks, Inc. For product information, please
contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com
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1 Introduction

1.1 PROLOGUE

Undoubtedly, the finite element method represents one of the most significant achievements in the
field of computational methods in the last century. Historically, it has its roots in the analysis of
weight-critical framed aerospace structures. These framed structures were treated as an assemblage
of one-dimensional members, for which the exact solutions to the differential equations for each
member were well known. These solutions were cast in the form of a matrix relationship between the
forces and displacements at the ends of the member. Hence, the method was initially termed matrix
analysis of structures. Later, it was extended to include the analysis of continuum structures. Since
continuum structures have complex geometries, they had to be subdivided into simple components
or “elements” interconnected at nodes. It was at this stage in the development of the method that
the term “finite element” appeared. However, unlike framed structures, closed form solutions to the
differential equations governing the behavior of continuum elements were not available. Energy prin-
ciples such as the theorem of virtual work or the principle of minimum potential energy, which were
well known, combined with a piece-wise polynomial interpolation of the unknown displacement,
were used to establish the matrix relationship between the forces and the interpolated displacements
at the nodes numerically. In the late 1960s, when the method was recognized as being equivalent
to a minimization process, it was reformulated in the form of weighted residuals and variational
calculus, and expanded to the simulation of nonstructural problems in fluids, thermomechanics, and
electromagnetics. More recently, the method is extended to cover multiphysics applications where,
for example, it is possible to study the effects of temperature on electromagnetic properties that
might affect the performance of electric motors.

1.2 FINITE ELEMENT ANALYSIS AND THE USER

Nowadays, in structural design, the analysis of all but simple structures is carried out using the finite
element method. When graduate structural engineers enter the design office, they will encounter
advanced commercial finite element software whose capabilities, and the theories behind its devel-
opment, are far superior to the training they have received during their undergraduate studies.
Indeed, current commercial finite element software is capable of simulating nonlinearity, whether
material or geometrical, contact, structural interaction with fluids, metal forming, crash simulations,
and so on. . . . Commercial software also come with advanced pre- and postprocessing abilities.
Most of the time, these are the only components the user will interact with, and learning how to use
them is often a matter of trial and error assisted by the documentation accompanying the software.
However, proficiency in using the pre- and postprocessors is by no means related to the accuracy of
the results. The preprocessor is just a means of facilitating the data input, since the finite element
method requires a large amount of data, while the postprocessor is another means for presenting
the results in the form of contour maps. The user must realize that the core of the analysis is what
happens in between the two processes. To achieve proficiency in finite element analysis, the user
must understand what happens in this essential part, often referred to as the “black box.” This will
only come after many years of high-level exposure to the fields that comprise FEA technology
(differential equations, numerical analysis, and vector calculus). A formal training in numerical
procedures and matrix algebra as applied in the finite element method would be helpful to the user,
particularly if he/she is one of the many design engineers applying finite element techniques in their
work without a prior training in numerical procedures.

1
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2 Introduction to Finite Element Analysis Using MATLAB� and Abaqus

1.3 AIM OF THE BOOK

The many textbooks that describe the theory of the finite element and/or its engineering applications
can be split into two categories: those that deal with the theory, assuming that the reader has access to
some sort of software, and those that deal with the programming aspect, assuming that the reader has
some theoretical knowledge of the method. The aim of this book is to bridge this gap. It introduces
the theory of the finite element method while keeping a balanced approach between its mathematical
formulation, programming implementation, and its application using commercial software. The
key steps are presented in sufficient details. The computer implementation is carried out using
MATLAB�, while the practical applications are carried out in both MATLAB and Abaqus�.

MATLAB is a high-level language specially designed for dealing with matrices. This makes it
particularly suited for programming the finite element method. In addition, MATLAB will allow the
reader to focus on the finite element method by alleviating the programming burden. Experience
has shown that books that include programming examples are of benefit to beginners. It should be
pointed out, however, that this book is not about writing software to solve a particular problem. It is
about teaching the first principles of the finite element method.

If the reader wishes to solve real-life problems, he/she will be better off using commercial
software such as Abaqus rather than writing his/her own code. Home-written software may have
serious bugs that can compromise the results of the analysis, while commercial software has much
operational and verification experience to back it up, notwithstanding the quality of the pre- and
postprocessing abilities. For this purpose, detailed step-by-step procedures for solving problems with
Abaqus interactive and keyword editions are given in this book. Abaqus is a suite of commercial
finite element codes. It consists of Abaqus Standard, which is a general purpose finite element
software, and Abaqus Explicit for dynamic analysis. It is now owned by Dassault Systèms and is
part of the SIMULIA range of products, http://www.simulia.com/products/unified_fea.html. Data
input for a finite element analysis with Abaqus can be done either through Abaqus/CAE or CATIA,
which are intuitive graphic user interfaces. They also allow monitoring and viewing of results. Data
can be entered in or using an input file prepared with a text editor and executed through the command
line, or using a script prepared with Python. Python is an object-oriented programming language and
is included in Abaqus as Abaqus Python. The latter is an advanced option reserved for experienced
users and will not be covered in this book.

1.4 BOOK ORGANIZATION

The organization of the book contents follows the historical development of the finite element
method. After some introductory notes in Chapter 1, Chapters 2 through 4 introduce matrix struc-
tural analysis for trusses, beams, and frames. The matrix relationships between the forces and
nodal displacements for each element type are derived using the direct approaches from structural
mechanics. Using a truss as an example in Chapter 1, the different steps required in a finite ele-
ment code; such as describing loads, supports, material, and mesh preparation, matrix manipulation,
introduction of boundary condition, and equation solving are described succinctly. Indeed, a truss
offers all the attributes necessary to illustrate the coding of a finite element code. Similar codes
are developed for beams and rigid jointed frames in Chapters 3 and 4, respectively. The described
procedures are implemented as MATLAB codes at the end of each chapter. In addition, detailed
step-by-step procedures for solving similar problems with both the Abaqus interactive and keyword
editions are provided at the end of each chapter.

Chapter 5 marks the change of philosophy between matrix structural analysis and finite element
analysis of a continuum. In matrix analysis, there is only one dominant stress, which is the lon-
gitudinal stress. In a continuum, on the other hand, there are many stresses and strains at a point.
Chapter 5 introduces the theories of stress and strain, and the relationships between them. It also
includes many solved problems that would help the reader understand the developed theories.
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Introduction 3

Chapters 6 and 7 introduce, respectively, the weighted residual methods and finite element
approximation, which include the various types of continuum elements and the different techniques
used to construct the piece-wise polynomial interpolations of the unknown quantities. These methods
are necessary to establish the matrix relationships between forces and nodal displacements for
continuum elements of complicated geometry, and whose behavior is governed by differential
equations for which closed form solutions cannot be easily established.

Chapter 8 is entirely devoted to numerical integration using the Gauss Legendre and Hammer
formulae with many examples at the end of the chapter. Indeed, during the implementation of
the finite element method, many integrals arise, as will be seen in Chapters 9 through 11. When
the number of elements is large, and/or their geometrical shape is general, as is the case in most
applications, the use of analytical integration is quite cumbersome and ill suited for computer coding.

In Chapter 9, the finite element formulation for plane stress/strain problems is presented. The
stiffness matrices for the triangular and quadrilateral families of elements are developed in detail,
enabling the reader to solve a wide variety of problems. The chapters also include a wide variety of
solved problems with MATLAB and Abaqus.

Chapter 10 introduces axisymmetric problems while Chapter 11 is devoted to the theory of
plates. The stiffness matrices for the most common elements are developed in detail, and numerous
examples are solved at the end of each chapter using both MATLAB and Abaqus.

The appendices and http://www.crcpress.com/product/isbn9781466580206 contain all the
MATLAB codes used in the examples.
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2 Bar Element

2.1 INTRODUCTION

There is no better way of illustrating the steps involved in a finite element analysis than by analyzing
a simple truss. Indeed, a truss is the first structural system introduced into the cursus of engineering
studies. As early as the first year, the student becomes acquainted with a truss in engineering statics.
A truss offers all the attributes needed to illustrate a finite analysis without the need to resort to
advanced mathematical tools such as numerical integration and geometrical transformations that are
required in the analysis of complicated structures.

A truss is a structure that consists of axial members connected by pin joints, as shown in Figure 2.1.
The loads on a truss are assumed to be concentrated at the joints. The members of a truss support
the external load through axial force as they do not undergo bending deformation. Therefore, no
bending moments are present in truss members.

2.2 ONE-DIMENSIONAL TRUSS ELEMENT

2.2.1 FORMULATION OF THE STIFFNESS MATRIX: THE DIRECT APPROACH

A member of a truss is the simplest solid element, namely, an elastic rod with ends 1 and 2 referred
to hereafter as nodes. Consider an element of length L, cross section A, and made of a linear elastic
material having a Young’s modulus E as represented in Figure 2.2a. If we apply a normal force N1

at node 1, and at the same time maintaining node 2 fixed in space, the bar shortens by an amount u1

as represented in Figure 2.2b.
The force N1 is related to the displacement u1 through the spring constant

N1 = AE

L
u1 (2.1)

In virtue of Newton’s third law, there must be a reaction force R2 at node 2 equal (in magnitude) and
opposite (in direction) to the force N1; that is,

R2 = −AE

L
u1 (2.2)

Similarly, if we apply a normal force N2 at node 2, and at the same time maintaining node 1 fixed
in space, the bar lengthens by an amount u2 as represented in Figure 2.2c. In the same fashion, the
force N2 is related to the displacement u2 through the spring constant

N2 = AE

L
u2 (2.3)

Again, in virtue of Newton’s third law, there must be a reaction force R1 at node 1 equal (in magnitude)
and opposite (in direction) to the force N2; that is,

R1 = −AE

L
u2 (2.4)

5
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a

F

FIGURE 2.1 Truss structure.
EA

1 2

xL

(a)

N1

u1

R2

(b)

N2

u2
R1

(c)

F2

u2

F1

u1

(d)

FIGURE 2.2 Bar element: (a) geometry, (b) nodal force applied at node 1, (c) nodal force applied at node 2,
(d) nodal forces applied at both nodes.

When the bar is subjected to both forces N1 and N2 in virtue of the principle of superposition, the
total forces F1 and F2 shown in Figure 2.2d will be

F1 = N1 − R1 = AE

L
u1 − AE

L
u2

F2 = N2 − R2 = −AE

L
u1 + AE

L
u2

(2.5)

Rearranging Equations (2.5) in a matrix form yields
[

AE/L −AE/L
−AE/L AE/L

]{
u1

u2

}
=

{
F1

F2

}
(2.6)

or simply as

[Ke] {ue} = {Fe} (2.7)
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where
the vector {ue} is the vector of nodal displacements
the vector {Fe} is the vector of nodal forces

The matrix [Ke] is called the stiffness matrix; it relates the nodal displacements to the nodal forces.
Knowing the forces F1 and F2, one may be tempted to solve the system of Equation (2.6) to obtain

the displacements u1 and u2. This is not possible, at least in a unique sense. Indeed, taking a closer
look at the matrix [Ke], it can be seen that its determinant is equal to zero; that is,

det([Ke]) =
(

AE

L

)2

−
(

AE

L

)2

= 0 (2.8)

That is, any set of displacements u1 and u2 is a solution to the system. As odd as it may appear at
this stage, this actually makes a lot of physical sense. In Figure 2.2d, the bar is subject to the forces
F1 and F2. Under the action of these forces, the bar will experience a rigid body movement since it
is not restrained in space. There will be many sets of displacements u1 and u2 that are solutions to
the system (2.6). To obtain a unique solution, the bar must be restrained in space against rigid body
movement. The state of restraints of the bar, or the structure in general, is introduced in the form of
boundary conditions. This will be covered in detail in Section 2.4.

2.2.2 TWO-DIMENSIONAL TRUSS ELEMENT

As shown in Figure 2.1, a plane truss structure consists of axial members with different orientations.
A longitudinal force in one member may act at a right angle to another member. For example, the
force F in Figure 2.1 acts at right angle to member a, and therefore causing it to displace in its
transversal direction.

The nodal degrees of freedom (nodal displacements) of the rod element become four as
represented in Figure 2.3, and they are given as

{de} = {u1, v1, u2, v2}T (2.9)

The corresponding stiffness matrix becomes

[Ke] =

⎡
⎢⎢⎣

AE/L 0 −AE/L 0
0 0 0 0

−AE/L 0 AE/L 0
0 0 0 0

⎤
⎥⎥⎦ (2.10)

Note that the second and fourth columns and rows associated with the transversal displacements are
null since the truss member has axial deformation only.

y

V1 V2

u1 u221 x

FIGURE 2.3 Degrees of freedom of a rod element in a two-dimensional space.
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Fx1

Fx2

fx2

fy1

fy2

Fy1

Fy2

U2

u2

V2

(a) (b)

FIGURE 2.4 Truss element oriented at an arbitrary angle θ: (a) Nodal displacements, (b) Nodal forces.

Another problem that arises from the fact that all truss members do not have the same orientation
is that when it comes to assemble the global stiffness, we need to have the element degrees of
freedom (nodal displacements) given in terms of the common reference axes of the truss.

Figure 2.4 shows a truss element oriented at an arbitrary angle θ with respect to the horizontal
axis (X, Y) of the structure. It also shows two sets of nodal displacements: The first set (u, v) is
given in terms of the local set of axis (x, y) associated with the element, while the second set of
displacements (U, V) is associated with the global set of axis (X, Y).

The element stiffness matrix is expressed in terms of the local displacements u and v. In order
to be assembled with the stiffness matrices of the other elements to form the global stiffness matrix
of the whole structure, it should be transformed such that it is expressed in terms of the global
displacements U and V .

If we consider node 1, it can be seen that the displacements U1 and V1 can be written in terms of
u1 and v1 as

U1 = u1 cos θ − v1 sin θ

V1 = u1 sin θ + v1 cos θ
(2.11)

In a similar fashion, U2 and V2 can be expressed in terms of u2 and v2 as

U2 = u2 cos θ − v2 sin θ

V2 = u2 sin θ + v2 cos θ
(2.12)

Grouping Equations (2.11) and (2.12) yields

⎧⎪⎪⎨
⎪⎪⎩

U1

V1

U2

V2

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎣

cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 cos θ − sin θ

0 0 sin θ cos θ

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

u1

v1

u2

v2

⎫⎪⎪⎬
⎪⎪⎭

(2.13)

or in a more compact form as

{de} = [C]{de} (2.14)
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The matrix [C] is called the transformation matrix. It is an orthonormal matrix with a determinant
equal to one. Its inverse is simply equal to its transpose; that is,

[C]−1 = [C]T (2.15)

The vector of the global nodal forces {fe} = {Fx1, Fy1, Fx2, Fy2}T may be also obtained from the vector
of local nodal forces {fe} = {fx1, fy1, fx2, fy2}T as

{fe} = [C]{fe} (2.16)

In the local coordinate system, the force–displacement relation is given as

[Ke] {de} = {fe} (2.17)

Using {de} = [C]T{de} and {fe} = [C]T{fe}, and substituting in (2.17) yields

[Ke][C]T{de} = [C]T{fe} (2.18)

Premultiplying both sides by [C] yields

[C][Ke][C]T{de} = {fe} (2.19)

which can be rewritten as

[Ke]{de} = {fe} (2.20)

with

[Ke] = [C][Ke][C]T (2.21)

The matrix [Ke] is called the element stiffness matrix in the global coordinate system; it relates the
global nodal displacements to the global nodal forces.

2.3 GLOBAL STIFFNESS MATRIX ASSEMBLY

2.3.1 DISCRETIZATION

To illustrate how the elements’ stiffness matrices are put together to form the global stiffness matrix,
we proceed with a very simple example. Consider the truss represented in Figure 2.5.

First, we number all the elements and the nodes as well as identifying the nodal degrees of freedom
(global displacement), as shown in Figure 2.5. In total, there are three nodes, three elements, and six
degrees of freedom [U1, V1, U2, V2, U3, V3].

2.3.2 ELEMENTS’ STIFFNESS MATRICES IN LOCAL COORDINATES

Referring to Equation (2.10), it can be seen that the element stiffness matrix is a function of the
material properties through the elastic modulus E, the cross-sectional area A of the element, and
its length L. The elastic modulus refers to the material used to build the truss. If we assume that
all the members of the truss are made of steel with an elastic modulus of 200000 MPa, and all
the elements have the same cross-sectional area, say 2300 mm2, then it is possible to evaluate each
element stiffness matrix.
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3

V3
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V1
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12 kN

6 
m

U2

FIGURE 2.5 Model of a truss structure.

Element 1 has a length of 4000 mm. Substituting in Equation (2.10), its stiffness matrix in its
local coordinates is obtained as

[K1]L =

⎡
⎢⎢⎣

115000 0 −115000 0
0 0 0 0

−115000 0 115000 0
0 0 0 0

⎤
⎥⎥⎦ (2.22)

Element 2 has a length of 6000 mm. Its stiffness matrix in its local coordinates is obtained as

[K2]L =

⎡
⎢⎢⎣

76666.67 0 −76666.67 0
0 0 0 0

−76666.67 0 76666.67 0
0 0 0 0

⎤
⎥⎥⎦ (2.23)

Element 3 has a length of 7211 mm, which can be calculated with the well-known Pythagoras
formula. Its stiffness matrix in its local coordinates is obtained as

[K3]L =

⎡
⎢⎢⎣

63791.43 0 −63791.43 0
0 0 0 0

−63791.43 0 63791.43 0
0 0 0 0

⎤
⎥⎥⎦ (2.24)

2.3.3 ELEMENTS’ STIFFNESS MATRICES IN GLOBAL COORDINATES

The elements’ stiffness matrices, as respectively given by Equations (2.22) through (2.24), cannot be
assembled into the global stiffness matrix of the truss because they are formulated in their respective
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local coordinate systems. In order to do so, they need to be transformed from their local coordinate
systems (x, y) to the global coordinate system (X, Y).

2.3.3.1 Element 1

The local axis x of element 1 makes an angle of 0◦ with the global X axis of the structure. In virtue
of Equation (2.13), its transformation matrix [C] is given as

[C1] =

⎡
⎢⎢⎣

cos(0) − sin(0) 0 0
sin(0) cos(0) 0 0

0 0 cos(0) − sin(0)

0 0 sin(0) cos(0)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (2.25)

The transformation matrix [C1] of element 1 is an identity matrix. Therefore, as per Equation
(2.19), premultiplying the matrix [K1]L by [C1] and postmultiplying it by [C1]T , that is, [C1][K1]L[C1]T ,
would not change anything, the reason being that the local axes of element 1 are co-linear with global
axes (X, Y) of the structure. Therefore, the stiffness matrix of element 1 [K1]G in the global coordinates
system remains unchanged; that is,

[K1]G =

⎡
⎢⎢⎢⎢⎢⎣

U1/u1 V1/v1 U2/u2 V2/v2

U1/u1 115000 0 −115000 0

V1/v1 0 0 0 0

U2/u2 −115000 0 115000 0

V2/v2 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

(2.26)

In its local coordinates (x, y), it has the degrees of freedom {u1, v1, u2, v2}, while in the global
coordinates, as shown in Figure 2.5, it has the global degrees of freedom {U1, V1, U2, V2}. The top
row and the left column outside the matrix show the correspondence between the local and the global
degrees of freedom.

2.3.3.2 Element 2

The local axis x of element 2 makes an angle of 90◦ with the global X axis of the structure. In virtue
of Equation (2.13), its transformation matrix [C] is given as

[C2] =

⎡
⎢⎢⎣

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎤
⎥⎥⎦ (2.27)

Premultiplying the matrix [K2]L by [C2] and postmultiplying it by [C2]T yields the stiffness matrix
[K2]G = [C2][K2]L[C2]T of element 2 in the global system of axes:

[K2]G =

⎡
⎢⎢⎢⎢⎢⎣

U2/u1 V2/v1 U3/u2 V3/v2

U2/u1 0 0 0 0

V2/v1 76666.67 0 −76666.67 0

U3/u2 0 0 0 0

V3/v2 −76666.67 0 76666.67 0

⎤
⎥⎥⎥⎥⎥⎦

(2.28)
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In its local coordinates (x, y), it has the degrees of freedom {u1, v1, u2, v2}, while in the global
coordinates, as shown in Figure 2.5, it has the global degrees of freedom {U2, V2, U3, V3}.

2.3.3.3 Element 3

The local axis x of element 3 makes an angle of θ = tan−1(6/4) = 56.31◦ with the global X axis of
the structure. Using Equation (2.13), its transformation matrix [C3] is given as

[C3] =

⎡
⎢⎢⎣

0.554699 −0.832051 0 0
0.832051 0.554699 0 0

0 0 0.554699 −0.832051
0 0 0.832051 0.554699

⎤
⎥⎥⎦ (2.29)

Premultiplying the matrix [K3]L by [C3] and postmultiplying it by [C3]T yields the stiffness matrix
[K3]G = [C3][K3]L[C3]T of element 3 in the global system of axes:

[K3]G =

⎡
⎢⎢⎢⎢⎢⎣

U1/u1 V1/v1 U3/u2 V3/v2

U1/u1 19628 29442 −19628 −29442

V1/v1 29442 44163 −29442 −44163

U3/u2 −19628 −29442 19628 29442

V3/v2 −29442 −44163 29442 44163

⎤
⎥⎥⎥⎥⎥⎦

(2.30)

In its local coordinates (x, y), it has the degrees of freedom {u1, v1, u2, v2}, while in the global
coordinates, as shown in Figure 2.5, it has the global degrees of freedom {U1, V1, U3, V3}.

2.3.4 GLOBAL MATRIX ASSEMBLY

As shown in Figure 2.5, the truss has six degrees of freedom {U1, V1, U2, V2, U3, V3}; that is, two
degrees of freedom per node. Its stiffness matrix must therefore have six lines and six columns each
corresponding to a degree of freedom:

[K] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U1 V1 U2 V2 U3 V3

U1 0 0 0 0 0 0

V1 0 0 0 0 0 0

U2 0 0 0 0 0 0

V2 0 0 0 0 0 0

U3 0 0 0 0 0 0

V3 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.31)
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To populate the global stiffness matrix, imagine three hypothetical states:

• First, only element 1 is present
• Second, only element 2 is present
• Third, only element 3 is present

2.3.4.1 Only Element 1 Is Present

[K] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U1 V1 U2 V2 U3 V3

U1 115000 0 −115000 0 0 0

V1 0 0 0 0 0 0

U2 −115000 0 115000 0 0 0

V2 0 0 0 0 0 0

U3 0 0 0 0 0 0

V3 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.32)

Notice that only the cases corresponding to the global degrees of freedom of element 1 are populated.

2.3.4.2 Only Element 2 Is Present

[K] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U1 V1 U2 V2 U3 V3

U1 0 0 0 0 0 0

V1 0 0 0 0 0 0

U2 0 0 0 0 0 0

V2 0 0 0 76666.67 0 −76666.67

U3 0 0 0 0 0 0

V3 0 0 0 −76666.67 0 76666.67

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.33)

2.3.4.3 Only Element 3 Is Present

[K] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U1 V1 U2 V2 U3 V3

U1 19628 29442 0 0 −19628 −29442

V1 29442 44163 0 0 −29442 −44163

U2 0 0 0 0 0 0

V2 0 0 0 0 0 0

U3 −19628 −29442 0 0 19628 29442

V3 −29442 −44163 0 0 29442 44163

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.34)
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By direct addition of the preceding matrices, the global structure stiffness matrix is obtained as

[K] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U1 V1 U2 V2 U3 V3

U1 115000 + 19628 29442 −115000 0 −19628 −29442

V1 29442 44163 0 0 −29442 −44163

U2 −115000 0 115000 0 0 0

V2 0 0 0 76666.67 0 −76666.67

U3 −19628 −29442 0 0 19628 29442

V3 −29442 −44163 0 −76666.67 29442 44163 + 76666.67

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.35)

2.3.5 GLOBAL FORCE VECTOR ASSEMBLY

Figure 2.6 shows a free body diagram where all the external forces acting on the truss are represented.
At node 1, which is pinned, there are two reaction forces: RX1 and RY1. At node 2, which is a roller
support, there is one reaction force RY2. Node 3 is free, but there is an external force of 12000 N
acting in the positive x-direction.

The external forces can be grouped in the global force vector as

{F} =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

RX1

RY1

0
RY2

12000
0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.36)
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RY1 RY2

FIGURE 2.6 Free body diagram of the truss.
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2.4 BOUNDARY CONDITIONS

2.4.1 GENERAL CASE

Once the global stiffness matrix and the global force vector are assembled, the equilibrium equations
of the truss are written as follows:⎡

⎢⎢⎢⎢⎢⎢⎣

134628 29442 −115000 0 −19628 −29442
29442 44163 0 0 −29442 −44163

−115000 0 115000 0 0 0
0 0 0 76666.67 0 −76666.67

−19628 −29442 0 0 19628 29442
−29442 −44163 0 −76666.67 29442 120829.67

⎤
⎥⎥⎥⎥⎥⎥⎦

×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

U1

V1

U2

V2

U3

V3

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

RX1

RY1

0
RY2

12000
0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

or in more compact form as

[K]{δ} = {F} (2.37)

As given by Equation (2.37), the system of equations cannot be solved in a unique fashion since
the matrix [K] is singular. Indeed, it is assembled from the elements’ stiffness matrices, which are
singular. In addition, the right-hand-side vector contains the unknown support reactions. To solve
the system of equations, it is necessary to partition the matrix [K] according to known and unknown
quantities. The vector of displacements {δ} can be partitioned into known and unknown quantities.
Node 1 is a pinned support; therefore, the displacements U1 and V1 are both equal to zero. Node 2
is a roller support; therefore, the displacement V2 is also equal to zero. It follows therefore that the
vector {δ} can be partitioned as follows:

{δ} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1 = 0
V1 = 0
V2 = 0

· · ·
U2

U3

V3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.38)

Similarly, the right-hand-side vector of global forces can be partitioned accordingly:

{F} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

RX1

RY1

RY2

· · ·
0

12000
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.39)

Note that unknown displacements correspond to known forces and known displacements correspond
to unknown forces.
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Finally, the matrix [K] is partitioned as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

134628 29442 0
... −115000 −19628 −29442

29442 44163 0
... 0 −29442 −44163

0 0 76666.67
... 0 0 −76666.67

· · · · · · · · · · · · · · · · · · · · ·
−115000 0 0

... 115000 0 0

−19628 −29442 0
... 0 19628 29442

−29442 −44163 −76666.67
... 0 29442 120829.67

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1 = 0
V1 = 0
V2 = 0

· · ·
U2

U3

V3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

RX1

RY1

RY2

· · ·
0

12000
0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

As a result of the position of V2 being interchanged with that of U2 in the vector {δ}, column 3 and
line 3 have also been respectively interchanged with column 4 and line 4 in the matrix [K]. Finally,
the partitioned system of equations can be rewritten in a compact form as

⎡
⎢⎢⎣

[KPP]
... [KPF]

· · · · · · · · ·
[KFP]

... [KFF]

⎤
⎥⎥⎦

⎧⎨
⎩

{δP}
· · ·
{δF}

⎫⎬
⎭ =

⎧⎨
⎩

{FP}
· · ·
{FF}

⎫⎬
⎭ (2.40)

where
The subscripts P and F refer respectively to the prescribed and free degrees of freedom
{δP}T = {0. 0. 0.} the vector of the known prescribed displacements
{δF}T = {U2 U3 V3} the vector of the unknown free displacements
{FP}T = {RX1 RY1 RY2} the vector of the unknown reaction forces corresponding to the prescribed

displacements
{FF}T = {0 12000 0} the vector of the known applied external forces

2.5 SOLUTION OF THE SYSTEM OF EQUATIONS

Equation (2.40) can be expanded to yield

[KPP] {δP} + [KPF] {δF} = {FP} (2.41)

[KFP] {δP} + [KFF] {δF} = {FF} (2.42)

Since {δP} and {FF} are known quantities, it is then possible to obtain from Equation (2.42) the
vector {δP} as

{δF} = [KFF]−1 {{FF} − [KFP] {δP}} (2.43)
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However, since {δP}T = {0. 0. 0.}, Equation (2.43) reduces to

{δF} = [KFF]−1 {FF} (2.44)

which is simply equivalent to eliminating the lines and the columns corresponding to the restrained
degrees of freedom in the global matrix; that is,

⎧⎨
⎩

U2

U3

V3

⎫⎬
⎭ =

⎡
⎣115000 0 0

0 19628 29442
0 29442 120829.67

⎤
⎦

−1 ⎧⎨
⎩

0
12000

0

⎫⎬
⎭

Solving the system of equations yields

{δF} =
⎧⎨
⎩

U2

U3

V3

⎫⎬
⎭ =

⎧⎨
⎩

0
0.9635

−0.2348

⎫⎬
⎭ mm

In summary, the vector of global displacements can be obtained as

{δ} =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

U1 = 0.
V1 = 0.
U2 = 0.
V2 = 0.

U3 = 0.9635
V3 = −0.2348

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.45)

2.6 SUPPORT REACTIONS

Once {δF} is known, it is possible to obtain from Equation (2.41) the vector of the unknown reaction
forces {FP}T = {RX1 RY1 RY2}. Since {δP}T = {0. 0. 0.}, the vector {FP} is obtained as

{FP} = [KPF] {δF}
That is,

⎧⎨
⎩

RX1

RY1

RY2

⎫⎬
⎭ =

⎡
⎣−115000 −19628 −29442

0 −29442 −44163
0 0 −76666.67

⎤
⎦

⎧⎨
⎩

0
0.9635

−0.2348

⎫⎬
⎭ =

⎧⎨
⎩

−12
−18
18

⎫⎬
⎭ kN

The obtained values for the support reactions can be easily checked using the equilibrium equa-
tions of a rigid body. Considering the free body diagram of the truss as shown in Figure 2.6, and
taking moments with respect to node 1 yields

�/1 = RY2 × 4 − 12 × 6 = 0 =⇒ RY2 = 18 kN

Considering vertical equilibrium yields

�Y = RY2 + RY1 = 0 =⇒ RY1 = −18 kN

Considering horizontal equilibrium yields

�X = 12 + RX1 = 0 =⇒ RX1 = −12 kN
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2.7 MEMBERS’ FORCES

Once all the displacements are known, the member forces can be easily obtained. For example, ele-
ment 3 has the following vector of global displacements, {d3}, extracted from the global displacements
vector {δ} Equation (2.45):

{d3} =

⎧⎪⎪⎨
⎪⎪⎩

U1 = 0
V1 = 0

U3 = 0.9635
V3 = −0.2348

⎫⎪⎪⎬
⎪⎪⎭

The vector of displacements in local coordinates {d3} is obtained using the inverse transformation
{d3} = [C3]T{d3}; that is,

{d3} =

⎡
⎢⎢⎣

0.554699 0.832051 0 0
−0.832051 0.554699 0 0

0 0 0.554699 0.832051
0 0 −0.832051 0.554699

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

0
0

0.9635
−0.2348

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

0
0

0.3391
−0.9319

⎫⎪⎪⎬
⎪⎪⎭

Multiplying the local stiffness matrix of element 3, [K3]L, by the local displacement vector {d3}
yields the local vector of forces {f3}; that is,

{f3} =

⎡
⎢⎢⎣

63791.43 0 −63791.43 0
0 0 0 0

−63791.43 0 63791.43 0
0 0 0 0

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

0
0

0.3391
−0.9319

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

−21.631
0

21.631
0

⎫⎪⎪⎬
⎪⎪⎭

kN

The forces on the bar element are represented graphically in Figure 2.7. It can be seen that the
member is under a tensile force of 21.631 kN. This result can be checked using the method of joints.

Y 3

3

xy

1

4 m

6 
m

X

21
.63

1 k
N

21
.63

1 k
N

FIGURE 2.7 Free body diagram of element 3.
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Y

3

33.69° 12 kN

F2

X

F3

FIGURE 2.8 Equilibrium of node 3.

Consider the free body diagram of node (joint) 3 as shown in Figure 2.8. The equilibrium of the
joint in the x direction requires

�X = 12 − F3 × sin(33.69) = 0 =⇒ F3 = 21.633 kN

This confirms the obtained result with the finite element method.

Remark: The preceding sections illustrate the steps required in a finite element analysis. As can be
noticed, even for a small number of elements (in this case 3), the calculations are rather involved.
For very large structures, with a large number of elements, the calculation effort is so intensive that
it is virtually impossible to carry out without the help of a digital computer. However, it can be also
noticed that the calculations involve matrix algebra and the steps are quite repetitive, which makes
them ideally suited for programming on a digital computer.

2.8 COMPUTER CODE: truss.m

The programming style and the syntax used by Smith and Griffiths [3] are adopted herein, except
that the coding is done in MATLAB�. MATLAB is a high-level language specially designed for
dealing with matrices. This makes it particularly suited for programming the finite element method.
In addition, MATLAB will allow the reader to focus on the finite element method rather than on the
programming details.

Programming the finite element method involves the following steps:

• Step 1: Data preparation and input.
• Step 2: Computation of element matrices.
• Step 3: Assembly of elements’ stiffness matrices and elements’ force vectors in the global

stiffness matrix and global force vector.
• Step 4: Imposition of boundary conditions such as prescribed displacements. This is usually

carried out simultaneously with the assembly of the global matrix in Step 3.
• Step 5: Solution of the global system of equations for the nodal unknowns.
• Step 6: Computation of secondary variables such as stresses and strains from displacements.
• Step 7: Print and/or plot desired results.
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These steps are best illustrated by means of an example. Let us consider the truss represented in
Figure 2.5. The main program is given in the M-file truss.m.

2.8.1 DATA PREPARATION

Since the basic building block in MATLAB is a matrix, the data will be prepared in the form of
tables whenever possible as they are very easily translated into matrices. Although there are many
ways of reading data in MATLAB, in what follows we will use an M-file, truss_1_data.m, to read
the data relevant to the truss. Note that a consistent set of units is required in any finite element
analysis. In this case, mm are used for length and N for forces.

The input data for this structure consist of

• nnd = 3; number of nodes
• nel = 3; number of elements
• nne = 2; number of nodes per element
• nodof = 2; number of degrees of freedom per node

2.8.1.1 Nodes Coordinates

The coordinates x and y of the nodes are given in the form of a matrix geom(nnd, 2):

geom =
⎡
⎣ 0 0

4000 0
4000 6000

⎤
⎦

2.8.1.2 Element Connectivity

The table of connectivity describes how the elements are connected to each other. The nodal
coordinates are given in the matrix connec(nel, 2):

connec =
⎡
⎣1 2

2 3
1 3

⎤
⎦

2.8.1.3 Material and Geometrical Properties

The material and geometrical properties are given in the matrix prop(nel, 2):

prop =
⎡
⎣200000 2300

200000 2300
200000 2300

⎤
⎦

2.8.1.4 Boundary Conditions

Boundary conditions give information on how the structure is restrained in space against any rigid
body movement. Without the introduction of boundary conditions, the global stiffness matrix is
singular. To solve the equilibrium equations, we need to know how the nodes are restrained in space.

In what follows, we adopt the following convention:

• A restrained degree of freedom is assigned the digit 0
• A free degree of freedom is assigned the digit 1

The information on the boundary conditions is given in the matrix nf(nnd, nodof). This matrix is
called the matrix of nodal freedom matrix. It is first initialized to 1, then the degrees of freedom
are read:
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nf =
⎡
⎣0 0

1 0
1 1

⎤
⎦

The free degrees of freedom (different from zero) are then counted and their rank assigned back into
the matrix nf(nnd, nodof):

nf =
⎡
⎣0 0

1 0
2 3

⎤
⎦

In this case, the total number of active degrees of freedom is obtained as n = 3. At this stage, it is
possible to initialize the global matrix KK(n, n) = 0 and the global force vector F(n) = 0:

KK =
⎡
⎣0 0 0

0 0 0
0 0 0

⎤
⎦ and F =

⎧⎨
⎩

0
0
0

⎫⎬
⎭

Note that we will only assemble the quantities corresponding to the active degrees of freedom;
that is, the lines and the columns in the matrix KK corresponding respectively to the active degrees
of freedom 1, 2, and 3. As to the restrained degrees of freedom, with a number equal to 0, they will
be simply eliminated.

2.8.1.5 Loading

Finally, to be able to solve for the unknown displacements, we need to know how the structure is
loaded. The information about the loading is also given in the form of a matrix, load(nnd, 2):

load =
⎡
⎣ 0 0

0 0
1200 0

⎤
⎦

The data are stored in the M-file: truss_1_data.m.
At this level in the main program truss.m, the model data are written to the file truss_1_results.txt

using the M-file: print_truss_model.m. This is not necessary; however, it is always helpful to write
the data to a file because it is easier to check for errors.

2.8.2 ELEMENT MATRICES

2.8.2.1 Stiffness Matrix in Local Coordinates

For each element, from 1 to nel, we set up the local stiffness and transformation matrices. Once the
stiffness matrix kl is set up in local coordinates, it is transformed into global coordinates kg through
the transformation matrix C and then assembled to the global stiffness matrix KK.

For any element i, we retrieve its first and second node from the connectivity matrix:

node_1 = connec(i, 1)

node_2 = connec(i, 2)

Then using the values of the nodes, we retrieve their x and y coordinates from the geometry matrix:

x1 = geom(node_1, 1); y1 = geom(node_1, 2)

x2 = geom(node_2, 1); y2 = geom(node_2, 2)
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Next, using Pythagoras theorem, we evaluate the length of the element:

L = √
(x2 − x1)2 + (y2 − y1)2

Finally, we retrieve the material and geometrical property of the section

E = prop(i, 1); A = prop(i, 2)

before evaluating the matrix kl using Equation (2.10).

The MATLAB script for evaluating the matrix kl is given in Appendix A in the M-file truss_kl.m.

2.8.2.2 Transformation Matrix

Once the nodal coordinates are retrieved, it is also possible to evaluate the angle θ that the element
makes with the global X axis:

θ = tan−1

(
y2 − y1
x2 − x1

)

However, care should be taken when the element is at right angle with the global axis X as x2−x1 = 0.
The matrix C is evaluated using Equation (2.25). The MATLAB script is given in Appendix A in
the M-file truss_C.m.

2.8.2.3 Stiffness Matrix in Global Coordinates

The element stiffness matrix kg is obtained using Equation (2.21):

kg = C × kl × CT

2.8.2.4 “Steering” Vector

Once the matrix kg is formed, we retrieve the “steering vector” g containing the number of degrees
of freedom of the nodes of the element:

g =

⎧⎪⎪⎨
⎪⎪⎩

nf(node_1, 1)

nf(node_1, 2)

nf(node_2, 1)

nf(node_2, 2)

⎫⎪⎪⎬
⎪⎪⎭

For example, for element 1, the vector g will look like

g =

⎧⎪⎪⎨
⎪⎪⎩

0
0
1
0

⎫⎪⎪⎬
⎪⎪⎭

The only nonzero component in the vector g is located in the third position, and its value is equal to
1. That is, only the element corresponding to the third line and third column in the matrix [kg(3, 3)]
will be assembled, and it will occupy the position [KK(1, 1] in the global matrix. The MATLAB
script for constructing the steering vector g is given in Appendix A in the M-file truss_g.m.
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2.8.3 ASSEMBLY OF THE GLOBAL STIFFNESS MATRIX

The global stiffness matrix [KK] is assembled using a double loop over the components of the
vector g:

loop i: for any g(i) �= 0
loop j: for any g(j) �= 0
add [kg(i, j)] to [KK(g(i), g(j))]
end loop j

end loop i

The script is given in Appendix A in the M-file form_KK.m.

2.8.4 ASSEMBLY OF THE GLOBAL FORCE VECTOR

A loop is carried over all the nodes. If a degree of freedom j of a node i is free, that is, nf(i, j) �= 0,
then it is susceptible of carrying an external force

F(nf(i, j)) = load(i, j)

The global force vector is formed in Appendix A in the M-file form_truss_F.m.

2.8.5 SOLUTION OF THE GLOBAL SYSTEM OF EQUATIONS

In MATLAB, it is very easy to solve a system of linear equations: one statement does it all. In this
case, the global displacements vector delta is obtained as

delta = KK\F

The backslash symbol \ is used to “divide” a matrix by a vector.

2.8.6 NODAL DISPLACEMENTS

Once the global displacements vector delta is obtained, it is possible to retrieve any nodal displace-
ments. A loop is carried over all the nodes. If a degree of freedom j of a node i is free, that is,
nf(i, j) �= 0, then it could have a displacement different from zero. The value of the displacement is
extracted from the global displacements vector delta:

node_disp(i, j) = delta(nf(i, j))

2.8.7 ELEMENT FORCES

To obtain the member forces, a loop is carried over all the elements:

1. Form element stiffness matrix [kl] in local xy.
2. Form element transformation matrix [C].
3. Transform the element matrix from local to global coordinates [kg] = [C] ∗ [kl] ∗ [C]T.
4. Form element “steering” vector {g}.

a. Loop over the degrees of freedom of the element to obtain element displacements
vector edg in global coordinates.

b. If g(j) = 0, then the degree of freedom is restrained; edg(j) = 0.
c. Otherwise edg(j) = delta(g(j)).
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5. Obtain element force vector in global XY coordinates
{fg} = [kg] ∗ {edg}.

6. Transform element force vector to local coordinates {fl} = [C]T ∗ {fg}.
7. For each element, store the third component of {fl}. If the component is positive, the element

is under “tension,” otherwise it is under “compression.”

The results of the analysis are written to the file truss_results.txt using the M-file
print_1_results.m given in Appendix A. A copy of the file truss_results.txt is included within
Section 2.8.8.

2.8.8 PROGRAM SCRIPTS

File:truss.m
% truss.m
%
% LINEAR STATIC ANALYSIS OF A TRUSS STRUCTURE
%
clc % Clear screen
clear % Clear all variables in memory
%
% Make these variables global so they can be shared
% by other functions
%
global nnd nel nne nodof eldof n global geom connec prop nf load
%
disp(’Executing truss.m’);

%
%%
% ALTER THE NEXT LINES TO CHOOSE AN OUTPUT FILE FOR THE RESULTS
% Open file for output of results
%
fid = fopen(’truss_1_results.txt’,’w’); disp(’Results printed in
file : truss_1_results.txt ’);
%
% ALTER THE NEXT LINE TO CHOOSE AN INPUT FILE
%
truss_1_data % Load the input file
%
print_truss_model % Print model data
%
KK =zeros(n) ; % Initialize global stiffness

% matrix to zero
%
F=zeros(n,1); % Initialize global force

% vector to zero
%
for i=1:nel

kl=truss_kl(i); % Form element matrix in local xy
%

C = truss_C(i); % Form transformation matrix
%

kg=C*kl*C’ ; % Transform the element matrix from
% local to global coordinates

%
g=truss_g(i) ; % Retrieve the element steering

% vector
%

KK =form_KK(KK, kg, g); % assemble global stiffness
% matrix

%
end
%
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%
F = form_truss_F(F); % Form global force vector
%
%
%%%%%%%%%%%% End of assembly %%%%%%%%%%%
%
%
delta = KK\F ; % solve for unknown displacements
%
% Extract nodal displacements
%
for i=1:nnd

for j=1:nodof
node_disp(i,j) = 0;
if nf(i,j)~= 0;
node_disp(i,j) = delta(nf(i,j)) ;
end

end
end
%
% Calculate the forces acting on each element
% in local coordinates, and store them in the
% vector force().
%
for i=1:nel

kl=truss_kl(i); % Form element matrix in local xy
C = truss_C(i); % Form transformation matrix
kg=C*kl*C’ ; % Transform the element matrix from

% local to global coordinates
g=truss_g(i) ; % Retrieve the element steering vector
for j=1:eldof

if g(j)== 0
edg(j)=0.; % displacement = 0. for restrained freedom

else
edg(j) = delta(g(j));

end
end
fg = kg*edg’; % Element force vector in global XY
fl=C’*fg ; % Element force vector in local xy
force(i) = fl(3);

end
%
print_truss_results;
%
fclose(fid);

File:truss_1_data.m
% File: truss_1_data.m
%
% The following variables are declared as global in order
% to be used by all the functions (M-files) constituting
% the program
%
global nnd nel nne nodof eldof n global geom connec prop nf load
%
format short e
%
%%%%%%%%%%%%%% Beginning of data input %%%%%%%%%%%%%%%%
%
nnd = 3; % Number of nodes:
nel = 3; % Number of elements:
nne = 2 ; % Number of nodes per element:
nodof =2 ; % Number of degrees of freedom per node
eldof = nne*nodof; % Number of degrees of freedom

% per element
%
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% Nodes coordinates X and Y
geom=zeros(nnd,2);
geom = [0. 0. ; ... % X and Y coord. node 1

4000. 0. ; ... % X and Y coord. node 2
4000. 6000.]; % X and X coord. node 3

%
% Element connectivity
%
connec=zeros(nel,2);
connec = [1 2 ; ... % 1st and 2nd node of element 1

2 3 ; ... % 1st and 2nd node of element 2
1 3]; % 1st and 2nd node of element 3

%
% Geometrical properties
%
% prop(1,1) = E; prop(1,2)= A
%
prop=zeros(nel,2);
prop = [200000 2300; ... % E and A of element 1

200000 2300; ... % E and A of element 2
200000 2300]; % E and A of element 3

%
% Boundary conditions
%
nf = ones(nnd, nodof); % Initialize the matrix nf to 1
nf(1,1) = 0; nf(1,2) =0 ; % Prescribed nodal freedom of node 1
nf(2,2) = 0 ; % Prescribed nodal freedom of node 3
%
% Counting of the free degrees of freedom
%
n=0; for i=1:nnd

for j=1:nodof
if nf(i,j) ~= 0
n=n+1;
nf(i,j)=n;
end

end
end
%
% loading
%
load = zeros(nnd, 2);
load(3,:)=[1200. 0]; %forces in X and Y directions at node 3
%
%%%%%%%%%%%%%%%%%%%%%%% End of input %%%%%%%%%%%%%%%%%%%%%%

File:truss_1_results.txt

******* PRINTING MODEL DATA **************

------------------------------------------------------
Number of nodes: 3
Number of elements: 3
Number of nodes per element: 2
Number of degrees of freedom per node: 2
Number of degrees of freedom per element: 4

------------------------------------------------------
Node X Y
1, 0000.00, 0000.00
2, 4000.00, 0000.00
3, 4000.00, 6000.00

------------------------------------------------------
Element Node_1 Node_2

1, 1, 2
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2, 2, 3
3, 1, 3

------------------------------------------------------
Element E A

1, 200000, 2300
2, 200000, 2300
3, 200000, 2300

------------------------------------------------------
Node disp_U disp_V
1, 0, 0
2, 1, 0
3, 2, 3

------------------------------------------------------
Node load_X load_Y
1, 0000.00, 0000.00
2, 0000.00, 0000.00
3, 1200.00, 0000.00

------------------------------------------------------

Total number of active degrees of freedom, n = 3

--------------------------------------------------------

******* PRINTING ANALYSIS RESULTS **************

------------------------------------------------------
Global force vector F

0
1200
0

------------------------------------------------------
Displacement solution vector: delta
-0.00000
0.09635
-0.02348

------------------------------------------------------
Nodal displacements
Node disp_X disp_Y
1, 0.00000, 0.00000
2, -0.00000, 0.00000
3, 0.09635, -0.02348

------------------------------------------------------
Members actions
element force action
1, -0.00, Compression
2, -1800.00, Compression
3, 2163.33, Tension

2.9 PROBLEMS

Prepare a data file for the trusses shown next and carry out the analysis using the code truss.m.

2.9.1 PROBLEM 2.1 (FIGURE 2.9)

Input file

% File: truss_problem_1_data.m
%
% The following variables are declared as global in order
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FIGURE 2.9 Model of Problem 2.1.

% to be used by all the functions (M-files) constituting
% the program
%
global nnd nel nne nodof eldof n global geom connec prop nf load
%
format short e
%
%%%%%%%%%%%%%% Beginning of data input %%%%%%%%%%%%%%%%
%
nnd = 9; % Number of nodes:
nel = 15; % Number of elements:
nne = 2 ; % Number of nodes per element:
nodof =2 ; % Number of degrees of freedom per node
eldof = nne*nodof; % Number of degrees of freedom

% per element
%
% Nodes coordinates X and Y
geom=zeros(nnd,2);
geom = [0. 0.; ... % X and Y coord. node 1

1. 2.; ... % X and Y coord. node 2
2. 0.; ... % X and Y coord. node 3
3. 2.; ... % X and Y coord. node 4
4. 0.; ... % X and Y coord. node 5
5. 2.; ... % X and Y coord. node 6
6. 0.; ... % X and Y coord. node 7
7. 2.; ... % X and Y coord. node 8
8. 0.] ; % X and Y coord. node 9

%
% Element connectivity
%
connec=zeros(nel,2);
connec = [1 2 ; ... % 1st and 2nd node of element 1

1 3 ; ... % 1st and 2nd node of element 2
2 3 ; ... % 1st and 2nd node of element 3
2 4 ; ... % 1st and 2nd node of element 4
3 4 ; ... % 1st and 2nd node of element 5
3 5 ; ... % 1st and 2nd node of element 6
4 5 ; ... % 1st and 2nd node of element 7
4 6 ; ... % 1st and 2nd node of element 8
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5 6 ; ... % 1st and 2nd node of element 9
5 7 ; ... % 1st and 2nd node of element 10
6 7 ; ... % 1st and 2nd node of element 11
6 8 ; ... % 1st and 2nd node of element 12
7 8 ; ... % 1st and 2nd node of element 13
7 9 ; ... % 1st and 2nd node of element 14
8 9 ] ; % 1st and 2nd node of element 15

%
% Geometrical properties
%
% prop(1,1) = E; prop(1,2)= A
%
prop=zeros(nel,2);
prop = [30.e6 0.02 ; ... % E and A of element 1

30.e6 0.045 ; ... % E and A of element 2
30.e6 0.02 ; ... % E and A of element 3
30.e6 0.045 ; ... % E and A of element 4
30.e6 0.02 ; ... % E and A of element 5
30.e6 0.045 ; ... % E and A of element 6
30.e6 0.02 ; ... % E and A of element 7
30.e6 0.045 ; ... % E and A of element 8
30.e6 0.02 ; ... % E and A of element 9
30.e6 0.045 ; ... % E and A of element 10
30.e6 0.02 ; ... % E and A of element 11
30.e6 0.045 ; ... % E and A of element 12
30.e6 0.02 ; ... % E and A of element 13
30.e6 0.045 ; ... % E and A of element 14
30.e6 0.02 ]; % E and A of element 15

%
% Boundary conditions
%
nf = ones(nnd, nodof); % Initialize the matrix nf to 1
nf(1,1) = 0; nf(1,2) =0 ; % Prescribed nodal freedom of node 1
nf(9,2)= 0 ; % Prescribed nodal freedom of node 3
%
% Counting of the free degrees of freedom
%
n=0; for i=1:nnd

for j=1:nodof
if nf(i,j) ~= 0
n=n+1;
nf(i,j)=n;
end

end
end
%
% loading
%
load = zeros(nnd, 2);
load(2,:)=[15. 0.]; %forces in X and Y directions at node 2
load(3,:)=[0. -5.]; %forces in X and Y directions at node 3
load(4,:)=[0. -7.]; %forces in X and Y directions at node 4
load(7,:)=[0. -10.]; %forces in X and Y directions at node 7

%
%%%%%%%%%%%%%%%%%%%%%%% End of input %%%%%%%%%%%%%%%%%%%%%%

Results file

******* PRINTING MODEL DATA **************

------------------------------------------------------
Number of nodes: 9
Number of elements: 15
Number of nodes per element: 2
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Number of degrees of freedom per node: 2
Number of degrees of freedom per element: 4

------------------------------------------------------
Node X Y
1, 0000.00, 0000.00
2, 0001.00, 0002.00
3, 0002.00, 0000.00
4, 0003.00, 0002.00
5, 0004.00, 0000.00
6, 0005.00, 0002.00
7, 0006.00, 0000.00
8, 0007.00, 0002.00
9, 0008.00, 0000.00

------------------------------------------------------
Element Node_1 Node_2

1, 1, 2
2, 1, 3
3, 2, 3
4, 2, 4
5, 3, 4
6, 3, 5
7, 4, 5
8, 4, 6
9, 5, 6
10, 5, 7
11, 6, 7
12, 6, 8
13, 7, 8
14, 7, 9
15, 8, 9

------------------------------------------------------
Element E A

1, 3e+007, 0.02
2, 3e+007, 0.045
3, 3e+007, 0.02
4, 3e+007, 0.045
5, 3e+007, 0.02
6, 3e+007, 0.045
7, 3e+007, 0.02
8, 3e+007, 0.045
9, 3e+007, 0.02
10, 3e+007, 0.045
11, 3e+007, 0.02
12, 3e+007, 0.045
13, 3e+007, 0.02
14, 3e+007, 0.045
15, 3e+007, 0.02

------------------------------------------------------
Node disp_U disp_V
1, 0, 0
2, 1, 2
3, 3, 4
4, 5, 6
5, 7, 8
6, 9, 10
7, 11, 12
8, 13, 14
9, 15, 0

------------------------------------------------------
Node load_X load_Y
1, 0000.00, 0000.00
2, 0015.00, 0000.00
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3, 0000.00, -005.00
4, 0000.00, -007.00
5, 0000.00, 0000.00
6, 0000.00, 0000.00
7, 0000.00, -010.00
8, 0000.00, 0000.00
9, 0000.00, 0000.00

------------------------------------------------------

Total number of active degrees of freedom, n = 15

--------------------------------------------------------

******* PRINTING ANALYSIS RESULTS **************

------------------------------------------------------
Global force vector F

15
0
0
-5
0
-7
0
0
0
0
0
-10
0
0
0

------------------------------------------------------
Displacement solution vector: delta
0.00014
-0.00010
0.00003
-0.00019
0.00010
-0.00023
0.00006
-0.00023
0.00007
-0.00021
0.00009
-0.00018
0.00005
-0.00009
0.00010

------------------------------------------------------
Nodal displacements
Node disp_X disp_Y
1, 0.00000, 0.00000
2, 0.00014, -0.00010
3, 0.00003, -0.00019
4, 0.00010, -0.00023
5, 0.00006, -0.00023
6, 0.00007, -0.00021
7, 0.00009, -0.00018
8, 0.00005, -0.00009
9, 0.00010, 0.00000

------------------------------------------------------
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Members actions
element force action
1, -7.69, Compression
2, 18.44, Tension
3, 7.69, Tension
4, -21.87, Compression
5, -2.10, Compression
6, 22.81, Tension
7, -5.73, Compression
8, -20.25, Compression
9, 5.73, Tension
10, 17.69, Tension
11, -5.73, Compression
12, -15.12, Compression
13, 16.91, Tension
14, 7.56, Tension
15, -16.91, Compression

2.9.2 PROBLEM 2.2 (FIGURE 2.10)

Input file

% File: truss_problem_2_data.m
%
% The following variables are declared as global in order
% to be used by all the functions (M-files) constituting
% the program
%
global nnd nel nne nodof eldof n global geom connec prop nf load
%
format short e
%

7.5 kN 3 6 5

5 7 9

1.
8 

m
1.

8 
m

1.
8 

m

2.4 m2.4 m2.4 m

4

10 kN

E = 30,000 MPa
A = 20,000 mm2

10 kN

4

2

2

3

1

1

8 6

FIGURE 2.10 Model of Problem 2.2.
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%%%%%%%%%%%%%% Beginning of data input %%%%%%%%%%%%%%%%
%
nnd = 6; % Number of nodes:
nel = 9; % Number of elements:
nne = 2 ; % Number of nodes per element:
nodof =2 ; % Number of degrees of freedom per node
eldof = nne*nodof; % Number of degrees of freedom

% per element
%
% Nodes coordinates X and Y
geom=zeros(nnd,2);
geom = [ 0. 0.; ... % X and Y coord. node 1

2400. 1800.; ... % X and Y coord. node 2
2400. 5400.; ... % X and Y coord. node 3
4800. 3600.; ... % X and Y coord. node 4
4800. 5400.; ... % X and Y coord. node 5
7200. 5400.]; % X and Y coord. node 6

%
% Element connectivity
%
connec=zeros(nel,2);
connec = [1 2 ; ... % 1st and 2nd node of element 1

1 3 ; ... % 1st and 2nd node of element 2
2 3 ; ... % 1st and 2nd node of element 3
2 4 ; ... % 1st and 2nd node of element 4
3 4 ; ... % 1st and 2nd node of element 5
3 5 ; ... % 1st and 2nd node of element 6
4 5 ; ... % 1st and 2nd node of element 7
5 6 ; ... % 1st and 2nd node of element 8
4 6 ] ; % 1st and 2nd node of element 9

%
% Geometrical properties
%
% prop(1,1) = E; prop(1,2)= A
%
prop=zeros(nel,2);
prop = [30000. 20000.; ... % E and A of element 1

30000. 20000.; ... % E and A of element 2
30000. 20000.; ... % E and A of element 3
30000. 20000.; ... % E and A of element 4
30000. 20000.; ... % E and A of element 5
30000. 20000.; ... % E and A of element 6
30000. 20000.; ... % E and A of element 7
30000. 20000.; ... % E and A of element 8
30000. 20000.]; % E and A of element 9

%
% Boundary conditions
%
nf = ones(nnd, nodof); % Initialize the matrix nf to 1
nf(1,2) =0 ; % Prescribed nodal freedom of node 1
nf(6,1)= 0 ; nf(6,2)= 0 ; % Prescribed nodal freedom of node 6
%
% Counting of the free degrees of freedom
%
n=0; for i=1:nnd

for j=1:nodof
if nf(i,j) ~= 0
n=n+1;
nf(i,j)=n;
end

end
end
%
% loading
%
load = zeros(nnd, 2);
load(2,:)=[0. -10000.]; %forces in X and Y directions at node 2
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load(3,:)=[-7500 0.]; %forces in X and Y directions at node 3
load(4,:)=[0. -10000.]; %forces in X and Y directions at node 4

%
%%%%%%%%%%%%%%%%%%%%%%% End of input %%%%%%%%%%%%%%%%%%%%%%

Results file

******* PRINTING MODEL DATA **************

------------------------------------------------------
Number of nodes: 6
Number of elements: 9
Number of nodes per element: 2
Number of degrees of freedom per node: 2
Number of degrees of freedom per element: 4

------------------------------------------------------
Node X Y
1, 0000.00, 0000.00
2, 2400.00, 1800.00
3, 2400.00, 5400.00
4, 4800.00, 4600.00
5, 4800.00, 5400.00
6, 7200.00, 5400.00

------------------------------------------------------
Element Node_1 Node_2

1, 1, 2
2, 1, 3
3, 2, 3
4, 2, 4
5, 3, 4
6, 3, 5
7, 4, 5
8, 5, 6
9, 4, 6

------------------------------------------------------
Element E A

1, 30000, 20000
2, 30000, 20000
3, 30000, 20000
4, 30000, 20000
5, 30000, 20000
6, 30000, 20000
7, 30000, 20000
8, 30000, 20000
9, 30000, 20000

------------------------------------------------------
Node disp_U disp_V
1, 1, 0
2, 2, 3
3, 4, 5
4, 6, 7
5, 8, 9
6, 0, 0

------------------------------------------------------
Node load_X load_Y
1, 0000.00, 0000.00
2, 0000.00, -10000.00
3, -7500.00, 0000.00
4, 0000.00, -10000.00
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5, 0000.00, 0000.00
6, 0000.00, 0000.00

------------------------------------------------------

Total number of active degrees of freedom, n = 9

--------------------------------------------------------

******* PRINTING ANALYSIS RESULTS **************

------------------------------------------------------
Global force vector F

0
0
-10000
-7500
0
0
-10000
0
0

------------------------------------------------------
Displacement solution vector: delta
-0.80865
-0.26183
-0.65965
0.18000
-0.61631
0.17710
-0.95294
0.09000
-0.95294

------------------------------------------------------
Nodal displacements
Node disp_X disp_Y
1, -0.80865, 0.00000
2, -0.26183, -0.65965
3, 0.18000, -0.61631
4, 0.17710, -0.95294
5, 0.09000, -0.95294
6, 0.00000, 0.00000

------------------------------------------------------
Members actions
element force action
1, 8333.33, Tension
2, -16414.76, Compression
3, 7222.22, Tension
4, 10243.94, Tension
5, 24595.49, Tension
6, -22500.00, Compression
7, -0.00, Compression
8, -22500.00, Compression
9, 31622.78, Tension

2.10 ANALYSIS OF A SIMPLE TRUSS WITH ABAQUS

2.10.1 OVERVIEW OF ABAQUS

Abaqus is a suite of commercial finite element software. It consists of Abaqus Standard,
which is a general purpose finite element software, and Abaqus Explicit for dynamic analy-
sis. It is now owned by Dassault Systèms and is part of the SIMULIA range of products,
http://www.simulia.com/products/unified_fea.html.
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Abaqus User Subroutines Reference Manual
Abaqus Glossary Manual

Abaqus Scripting User’s Manual
Abaqus Scripting Reference Manual
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Abaqus GUI Toolkit Reference Manual
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Getting Started with Abaqus: Interactive Edition
Getting Started with Abaqus: Keywords Edition

FIGURE 2.11 Abaqus documentation.

Data input for a finite element analysis with Abaqus can be done either through Abaqus/CAE,
which is an intuitive graphic user interface, that also allows monitoring and viewing the results, or
through an input file prepared with a text editor and executed through the command line, or finally
using a script prepared with Python, which is an object-oriented programming language. Python is
included in Abaqus as Abaqus Python. The latter is an advanced option reserved for experienced
users and will not be covered in this book. Note that Python is free to use, even for commercial
products, because of its OSI-approved open-source license (http://www.python.org/).

Abaqus also comes with an integrated user manual, Abaqus Documentation, that can be opened
in a browser; see Figure 2.11. New users usually prefer using the graphic interface, and they can start
with the tutorial provided in the documentation: “Getting started with Abaqus: Interactive edition.”
This tutorial takes the user through all the steps required to build a finite element model, analyze it,
and visualize the results. There are also many tutorials available on the web.

Students can join the SIMULIA Learning Community and they may be eligible for a free copy
of Abaqus Student Version (http://www.simulia.com/academics/purchase.html).

2.10.2 ANALYSIS OF A TRUSS WITH ABAQUS INTERACTIVE EDITION

2.10.2.1 Modeling

In this section, we will analyze the truss shown in Figure 2.9 with the Abaqus interactive edition.

Click Start, All Programs and locate
Abaqus as shown in Figure 2.12.

FIGURE 2.12 Starting Abaqus.
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Double click on Abaqus CAE
to reveal the main user inter-
face. Click on Create Model
Database to start a new anal-
ysis. On the main menu, click
on File and Set Work Direc-
tory to choose your working
directory. Click on Save As
and name the file Truss.cae
(Figure 2.13). FIGURE 2.13 Abaqus CAE main user interface.

On the left-hand-side menu, click on
Part to begin creating the model
(Figure 2.14).

FIGURE 2.14 Creating a part.

The creating part window shown in
Figure 2.15 appears on the screen. Name
the part Truss_part, and check 2D Pla-
nar as this is a planar truss, check
on Deformable in the type. Choose
Wire as the base feature. Enter an
approximate size of 10 m and click on
Continue. WARNING: There are no
predefined system of units within
Abaqus, so the user is responsible for
ensuring that the correct units are
specified.

FIGURE 2.15 Choosing the geometry of the part.
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Click on Auto-fit View to fit the
view of the sketcher to the screen.
You can also place the cursor on
the center of the sketcher and zoom
in and out using the middle mouse
button (Figure 2.16).

FIGURE 2.16 Fitting the sketcher to the screen.

In the sketcher menu, choose
the Create-Lines Connected
button to begin drawing
the geometry of the truss
(Figure 2.17).

FIGURE 2.17 Drawing using the connected line
button.

Begin drawing the truss. The
coordinates of the cursor are
given in the top-left corner.
You could also enter them
using the Pick a point or
enter X-Y coordinates in the
box situated in the bottom-left
corner. Once finished, click
on Done in the bottom-left
corner to exit the sketcher
(Figure 2.18).

FIGURE 2.18 Drawing the truss geometry.

The finished part should
appear as shown in
Figure 2.19.

FIGURE 2.19 Finished part.
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Next, under the model tree,
click on Materials to create
a material for the truss. Since
all the members of the truss
are made of the same mate-
rial, we will only define one
material, which we will name
Truss_material. Then click
on Mechanical, then Elastic-
ity, and Elastic (Figure 2.20).

FIGURE 2.20 Material definition.

Enter 30.e6 kN/m2 for the elas-
tic modulus, and 0.3 for Poisson’s
ratio even though it is not applica-
ble for a truss (Figure 2.21).

FIGURE 2.21 Material properties.
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The longitudinal members of
the truss have a cross area of
0.045 m2 and the diagonal
members have a cross area
of 0.02 m2. To input this
data, we need to define two
sections (Figure 2.22).

Under the Model tree, click
on Sections and the Create
Section window appears.
Name the section Longi-
tudinal. In the Category
check Beam, and in the
Type, choose Truss. Click on
Continue.

FIGURE 2.22 Create section window.

Next the Edit Section win-
dow appears. Scroll through
Material and choose the
already created material
Truss_material to assign
it to the section. In Cross
sectional area enter 0.045 m2

and click OK (Figure 2.23).

Follow exactly the same
procedure to create another
section named Diagonal and
enter 0.02 m2 for the cross
area. FIGURE 2.23 Edit material window.

Next we assign the defined
sections to the corresponding
members. Expand the menu
under Truss_part and click
on Section assignment. The
message Select the regions
to be assigned a section
should appear on the bottom-
left corner of the main win-
dow (Figure 2.24).

FIGURE 2.24 Section assignment.
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Keep the Shift key down, and
with the mouse select the
horizontal members. Once
a member is selected it
changes color. Click on done
in the bottom-left corner
next to the message Sel-
ect the regions to be ass-
igned a section. The Edit
Section Assignment win-
dow appears (Figure 2.25). FIGURE 2.25 Regions to be assigned a section.

In Section, scroll to Longitudinal and
click on OK (Figure 2.26).

Repeat the same thing for the diagonal
members. Keep the Shift key down,
and with the mouse select the diagonal
members. Click on done in the bottom-
left corner next to the message Select
the regions to be assigned a section.
The Edit Section Assignment window
appears. In Section, scroll to Diagonal
and click on OK.

FIGURE 2.26 Edit section assignment.

In the next step, we will
define the elements. Expand
the menu under Truss_part
and click on Mesh(empty)
to load the meshing menu
(Figure 2.27).

FIGURE 2.27 Loading the meshing menu.
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On the main menu, click on
Mesh and then on Element
Type, and with the mouse
select the whole truss. Click
on Done in the bottom-left
corner of the main window
(Figure 2.28).

FIGURE 2.28 Selecting regions to be assigned element type.

The element type dialog box
appears. In Element Library
click on Standard. In Ele-
ment family scroll down and
choose Truss. In Geomet-
ric order, choose Linear.
The message T2D2: A 2:
node linear 2-D truss should
appear in the dialog box
(Figure 2.29).

FIGURE 2.29 Selecting element type.
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On the main menu click
on Seed, then on Edge by
number, and select the
whole truss. Enter 1 in the
bottom-left corner of the main
window, and press Enter.
The seeding on the truss
should look like Figure 2.30.

On the main menu, click
on Mesh again, and then on
Part to mesh the truss. Once
meshed, the truss changes
color to blue.

FIGURE 2.30 Mesh.

Expand the menu under
Assembly and double click on
instances.
In Abaqus you can create
many parts and assemble
them together to form a model.
You can also create many
instances from one part. For
example, in a bridge, you do
not have to draw all the gird-
ers. If they are similar, draw-
ing one is enough. The others
are created as instances of the
first one (Figure 2.31).

FIGURE 2.31 Assembling the model.
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The create instance dia-
log box appears. In this
case, we have only one part:
Truss_part. Select it and
click OK (Figure 2.32).

FIGURE 2.32 Creating instances.

Before introducing the boundary con-
ditions, we need to understand how
the degrees of freedom are numbered.
The translations along the axes x, y,
and z are respectively numbered 1, 2,
and 3. The rotations around these axes
are respectively numbered 4, 5, and 6
(Figure 2.33).

Y

2

5

3 4

1

X

6

Z

FIGURE 2.33 Numbering of the degrees of freedom.
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Expand the menu under Steps
and Initial, click on BC to
introduce the boundary con-
ditions (Figure 2.34).

FIGURE 2.34 Creating boundary conditions.

The Create Boundary
Condition dialog box appears.
Name the boundary con-
dition Pinned_support.
Choose Symmetry/Antisym-
metry/Encastré and click on
Continue (Figure 2.35).

FIGURE 2.35 Type of boundary conditions.
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Select the left-side support
and click on Done (Figure
2.36).

FIGURE 2.36 Selecting a region to be assigned boundary
conditions.

The Edit Boundary Condition dia-
log box appears. Select PINNED(U1 =
U2 = U3 = 0) and click on OK (Figure
2.37).

FIGURE 2.37 Edit boundary condition dialog box for
pinned support.
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Under Steps and Initial, click on BC to
create the boundary conditions for the
roller. In the Create Boundary Con-
dition dialog box, name the boundary
condition Roller_Support. Choose
Symmetry/Antisymmetry/Encastré
and click on Continue. Select the right
support and click on Done. In the Edit
Boundary Condition dialog box, select
XASYMM(U2 = U3 = UR1 = 0)

and click on OK (Figure 2.38).

FIGURE 2.38 Edit boundary condition dialog box for
roller support.

In the left-hand-side menu, right click on
Steps to crate another step for applying
the loads. Click on Continue (Figure
2.39).

FIGURE 2.39 Creating a step for load application.
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In the Create Step dialog box, name the step
Apply_Loads, select Static, General, and
click on Continue (Figure 2.40).

FIGURE 2.40 Create step dialog box.

In the Edit step dialog box,
although it is not necessary,
you can still provide a descrip-
tion such as applying joint
loads. Leave all the other
details as they are, and click
on OK (Figure 2.41).

FIGURE 2.41 Edit step dialog box.
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In the left-hand-side menu, under Steps
and Apply_Loads, click on Loads as
shown in Figure 2.42.

FIGURE 2.42 Creating a load.

In the Create load dialog box, name
the load Horizontal 15 kN force. In Step
scroll to Apply_Loads, which means
that the load will be applied in this step.
In Category choose Mechanical, and
in Type choose Concentrated Force.
Click on Continue (Figure 2.43).

FIGURE 2.43 Creating a concentrated load.
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With the mouse, select the top-left joint
as shown in Figure 2.44, and click on
done in the bottom-left corner of the
same window.

FIGURE 2.44 Selecting a joint for load application.

In the Edit Load dialog box, enter 15.
for CF1, and click on OK (Figure 2.45).

FIGURE 2.45 Entering the magnitude of a joint force.

Repeat the same procedure for
the other joint loads. Since
they are vertical loads point-
ing in opposite direction to the
axis y, their magnitude should
be entered in CF2 as nega-
tive. Once finished, the loaded
truss should look like the one
shown in Figure 2.46. FIGURE 2.46 Loaded truss.
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2.10.2.2 Analysis

Under Analysis, right click on Jobs and
then click on Create (Figure 2.47).

FIGURE 2.47 Creating a job.

The Create Job dialog box appears.
Name the job Truss_Problem_1, and
click on Continue (Figure 2.48).

FIGURE 2.48 Naming a job.
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The Edit Job dialog box appears. Enter
a description for the job. Check Full
analysis and choose to run the job
in Background and check to start it
immediately. Click OK (Figure 2.49).

FIGURE 2.49 Editing a job.

Expand the tree under Jobs, right click
on Truss_Problem_1. Then, click on
Submit (Figure 2.50).

FIGURE 2.50 Submitting a job.

If you get the following mes-
sage Job Truss_Problem_1
completed successfully in the
bottom window, then your job
is free of errors and was exe-
cuted properly. Now, it is time
to view the analysis results
(Figure 2.51).

FIGURE 2.51 Monitoring of a job.
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Under the top menu, in the Module
scroll to Visualization, and click to load
Abaqus Viewer. On the main menu,
under File, click Open, navigate to your
working directory, and open the file
Truss_Problem_1.odb. It should have
the same name as the job you submitted
(Figure 2.52).

FIGURE 2.52 Opening the visualization module.

Click on the Common options icon to
display the Common Plot options dia-
log box. Under labels, check Show Ele-
ment labels and Show Node labels to
display elements and nodes’ numbering
(Figure 2.53).

FIGURE 2.53 Common plot options.

You may obtain a dif-
ferent nodes and ele-
ments numbering to the
one shown in Figure
2.54. However, you must
ensure that there are 15
elements and 9 nodes
only.

FIGURE 2.54 Elements and nodes’ numbering.
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Click on the icon Plot
Deformed Shape to dis-
play the deformed shape
of the truss (Figure 2.55).

FIGURE 2.55 Deformed shape.

On the main menu, click
on Results then on Field
Output to open the
Field Output dialog box.
Choose U Spatial dis-
placements at nodes. For
component, choose U2 to
plot the vertical displace-
ment (Figure 2.56).

FIGURE 2.56 Field output dialog box.
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Figure 2.57 shows the
contour plot of the vertical
displacement U2 as well
as the legend block.

+0.000e+00
U, U2

–1.945e–05
–3.890e–05
–5.835e–05
–7.780e–05
–9.726e–05
–1.167e–04
–1.362e–04
–1.556e–04
–1.751e–04
–1.945e–04
–2.140e–04
–2.334e–04

14

15

11

7

13 10

3

9 6 5

1

5
4

2

812

FIGURE 2.57 Contour plot of the vertical displacement U2.

If you cannot read the dis-
placements values in the leg-
end block, on the main menu
click on Viewport Annota-
tion Options. Under Legend,
click on Set font and enter a
bigger font (Figure 2.58).

FIGURE 2.58 Viewport annotations options.

On the main menu, click
on Results, then on Field
Output to open the Field
Output dialog box. Choose
S Stress components at
integration points. For
component, choose S11 to
plot the stresses in the bars.

Note that Abaqus does not
plot the normal forces in the
bars (Figure 2.59). FIGURE 2.59 Normal stresses in the bars.
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To create a text file containing the reac-
tion forces and nodal displacements, in
the menu bar click on Report and Field
Output. In the Report Field Output
dialog box, for Position select Unique
nodal, check RF1 and RF2 for RF:
Reaction force, and check U1 and U2
for U: Spatial displacement. Then click
on click on Set up (Figure 2.60).

FIGURE 2.60 Selecting variables to print to a report.

Click on Select to nav-
igate to your working
directory. Name the file
Truss_Problem_1.rpt.
Uncheck Append to file and
click OK (Figure 2.61).

FIGURE 2.61 Choosing a directory and the file name
to which to write the report.
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Open your working directory and take a look at the files generated by Abaqus. You can happily
ignore most of them. However, you should keep the *.inp file as it contains all the information about
the model. We will write a similar file in the next section. The *.odb is binary and contains all the
information about the model and the results of the analysis. It is used by the visualization module
to view the results. The *.dat contains written output such as results. Most importantly, it contains
any errors made during the setting up of the model. The *.msg file that appears as an outlook item
in Windows contains any error that arises during the analysis. It is particularly useful in nonlinear
problems. The rest of the files, you can ignore them for the time being.

Use your favorite text editor, and open the file Truss_Problem_1.rpt

********************************************************************************
Field Output Report, written Fri Apr 01 09:17:09 2011

Source 1
---------

ODB: F:/TRAVAIL/NEW_BOOK/Abaqus_examples/truss_problem_1.odb
Step: Load_step
Frame: Increment 1: Step Time = 1.000

Loc 1 : Nodal values from source 1

Output sorted by column "Node Label".

Field Output reported at nodes for part: TRUSS-1

Node RF.RF1 RF.RF2 U.U1 U.U2
Label @Loc 1 @Loc 1 @Loc 1 @Loc 1

---------------------------------------------------------------------------------
1 0. 0. 73.6886E-06 -213.242E-06
2 0. 0. 51.2812E-06 -94.0781E-06
3 0. 15.125 98.5185E-06 -15.125E-36
4 0. 0. 103.689E-06 -233.414E-06
5 0. 0. 87.3148E-06 -182.554E-06
6 0. 0. 136.096E-06 -100.075E-06
7 0. 0. 61.1111E-06 -230.828E-06
8 0. 0. 27.3148E-06 -186.493E-06
9 -15. 6.875 15.E-36 -6.875E-36

Note that at node 9, the horizontal reaction is equal to −15 kN, and the vertical reaction is equal
to 6.875. The horizontal and vertical displacements at node 7 are respectively equal to 61.1111e −
06, −230.828e−06 m, which are the same as previously obtained with the MATLAB code truss.m,
node 5, 0.00006, −0.00023 m.

2.10.3 ANALYSIS OF A TRUSS WITH ABAQUS KEYWORD EDITION

In Abaqus you can create a complete finite element model by simply using a text editor. The input file
must have the extension .inp. It contains Abaqus commands in the format of Keywords. A keyword
starts with a *. In the Abaqus Documentation, click on the Abaqus Keywords Reference Manual
to find the meaning and usage of all the Abaqus keywords. They are organized in an alphabetical
order.

In this section, we will prepare an input file for the truss shown in Figure 2.9. We will keep the
same node and element numbering. The problem at hand is very simple; therefore, the file should
be very easy to understand.

Using a text editor, create a file and save it as truss_problem_1_keyword.inp. Before creating
the model, make sure you adhere to the following rules:
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• Any line that starts with two stars ** represents a comment that will be ignored by Abaqus.
• Any line that starts with only one * represents a command, and Abaqus will attempt to

execute it. If it is not a proper keyword, an error will result.
• Any line that does not start with (*) or (**) represents data.
• Do not leave blank lines, instead use two stars **.

*HEADING
Example Truss_Problem_1_Keyword_Edition

**
** the HEADING (Example Truss_Problem_1_Keyword_Edition) will appear on any output files

** created by Abaqus

**
*************************************************
**
** Geometry definition

**
** Enter the nodal coordinates of the nodes

**
**
*Node, Nset = all_nodes
1, 0., 0.
2, 1., 2.
3, 2., 0.
4, 3., 2.
5, 4., 0.
6, 5., 2.
7, 6., 0.
8, 7., 2.
9, 8., 0.

**
**Define node sets to be used for BC and applying loads

**
**
*Nset, nset=Pinned_support
1

*Nset, nset=Roller_support
9

**
*Nset, nset=HF15
2

*Nset, nset=VF5
3

*Nset, nset=VF7
4

*Nset, nset=VF10
7

**
** Select element type as T2D2 (planar truss element)

** and define element connectivity

**
*Element, type=T2D2
1, 1, 2
2, 1, 3
3, 2, 3
4, 2, 4
5, 3, 4
6, 3, 5
7, 4, 5
8, 4, 6
9, 5, 6
10, 5, 7
11, 6, 7
12, 6, 8
13, 7, 8
14, 7, 9
15, 8, 9
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**
** Create two element sets one for the horizontal elements named "Horizontal"

** and one for the diagonal elements named "Diagonal"

**
*elset, elset = Horizontal
2, 4, 6, 8, 10, 12, 14

*elset, elset = Diagonal
1, 3, 5, 7, 9, 11, 13, 15

**
** Define material, and name it "My_material"

**
**
*Material, name=My_material

*Elastic
3e+07,

**
**
** Define a section for the horizontal members

**
*Solid Section, elset= Horizontal, material=My_material
0.045,

**
**
** Define a section for the diagonal members

**
*Solid Section, elset=Diagonal, material=My_material
0.02,

**
**
** Define Boundary Conditions

**
*Boundary
Roller_support, XASYMM Pinned_support, PINNED

** ----------------------------------------------------------------

**
** Define step and name it "Load_step"

**
*Step, name=Load_step

*Static
1., 1., 1e-05, 1.

**
** Apply the loads as concentrated forces

**
*Cload
HF15, 1, 15.
VF5, 2, -5.
VF10, 2, -10.
VF7, 2, -7.

**
** OUTPUT REQUESTS

**
** FIELD OUTPUT

** Only request the default field output

**
*Output, field, variable=PRESELECT

**
** HISTORY OUTPUT

** Only request the default History output

**
*Output, history, variable=PRESELECT

*End Step

The file starts with the keyword *HEADING. Below in the data line put any text you want to
describe the model. The text will appear on any output files created by Abaqus.

Next define the geometry of the nodes using the keyword *node. You can group all the nodes in
a node set named all_nodes. In the data line, below the keyword, enter the node number, followed
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by its x and y coordinates. Use one line per node and make sure you separate the entered values by
commas “,”. Otherwise, you will get an error.

Once all the nodes are defined, create node sets that will be used later for imposing the boundary
conditions and applying the loads:

• *Nset, nset=Pinned_support creates a node set named Pinned_support that contains the
node 1 entered in the data line.

• *Nset, nset=Roller_support creates a node set named Roller_support containing node 9.
• *Nset, nset=HF15 creates a node set named HF15 containing node 2.
• *Nset, nset=VF5 creates a node set named VF5 containing node 3.
• *Nset, nset=VF7 creates a node set named VF7 containing node 4.
• *Nset, nset=VF10 creates a node set named VF10 containing node 7.

Next using the keyword *elset create two elements sets, one for the horizontal members named
Horizontal and one for the diagonal members named Diagonal.

Using the keyword *Material create a material named My_material. The created material is
elastic and has a Young’s modulus of 3e + 07 given in the data line of the keyword *Elastic.

Using the keyword *Solid Section create a section for the horizontal members with the element
set Horizontal and My_material for material. Enter the cross section of 0.045 in the data line.
Create another one for the diagonal members using the element set Diagonal and the same material.
This time enter 0.02 for the cross section.

Using the keyword *Boundary apply the boundary condition. We assign YSYMM (symmetry
about a plane Y = constant) to node set Roller_support. It means the degrees of freedom 2, 4, and
6 are suppressed. In the next data line, we assign PINNED to node set Pinned_support. It means
the degrees of freedom 1, 3, and 3 are suppressed.

Next using the keyword *step create a step and name it Load_step. The keyword *static indicates
that it will be a general static analysis. It is important to note that there are four values in the data
line of the keyword *static. These values represents pseudo-time in Abaqus Standard; that is, a
mapping between time and load. The first value equal to 1 represents the initial time increment. In
other words, Abaqus will initially try to apply the total load as one increment. The second value
also equal to 1 is the total time period of the step. The third value corresponds to the minimum
time increment. This particularly happens in nonlinear analysis. If Abaqus cannot apply the load as
a whole, it keeps reducing the increment until it reaches this minimum value. The fourth and last
value is the maximum time increment allowed.

The keyword *cload indicates that the loads will be applied as concentrated loads. In the data
lines,

• HF15, 1, 15. indicates that a positive 15 kN load is applied in the direction 1 (x direction)
to node set HF15 defined previously

• VF5, 2, −5. indicates that a negative 5 kN load is applied in the direction 2 (y direction) to
node set VF5 defined previously

• VF10, 2, −10. indicates that a negative 10 kN load is applied in the direction 2 (Y direction)
to node set VF10 defined previously

• VF7, 2, −7. indicates that a negative 7 kN load is applied in the direction 2 (Y direction) to
node set VF7 defined previously

You can request outputs that will be written to the database file (*.odb) using the keyword
*output. There are two types of outputs: field and history. When the variable is set equal to
PRESELECT, only the default variables will be printed. Field output is intended for infrequent
requests for a large portion of the model and can be used to generate contour plots, animations, and
so on. History output, on the other hand, is intended for relatively frequent output requests for small
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FIGURE 2.62 Running Abaqus from the command line.

portions of the model and is displayed in XY data plots. For example, if we want to monitor the
displacement of a node with load, this is the type of output that needs to be requested.

You can create many steps in Abaqus, but each one of them must end with the keyword *end
step.

If your operating system is Windows, in Start Menu, click on Accessories and then on Command
prompt to open a DOS shell. Using DOS commands, navigate to your working directory. At
the command line type Abaqus job=truss_problem_1_keyword inter followed by Return. The
outcome should be similar to the one shown in Figure 2.62. If you get an error, open the file with
extension *.dat to see what type of error. To load the visualization model, type Abaqus Viewer at
the command line.
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3 Beam Element

3.1 INTRODUCTION

A beam constitutes the simplest way of spanning a gap between two objects. As structural elements,
beams are prominent in both civil and mechanical engineering. They are used as supports for floors
in buildings, decks in bridges, wings in aircraft, or axles for cars.

A beam is generally slender and carries loadings applied perpendicular to its longitudinal axis.
In matrix structural analysis, or finite element for that matter, a beam is regarded as an element with
a node at each end. When the element is loaded as shown in Figure 3.1a, each node will undergo
a vertical displacement w and a rotation θ as shown in Figure 3.1b. The end nodes 1 and 2 are
subject to shear forces and moments, which result in vertical translations and rotations. Each node,
therefore, has two degrees of freedom. In total, the element has four degrees of freedom. The nodal
forces and displacements can be expressed in vector form as

{Fe} = {F1, M1, F2, M2}T (3.1)

{de} = {w1, θ1, w2, θ2}T (3.2)

The differential equations describing the behavior of a beam element are well known. They are
referred to as the Euler–Bernoulli theory of bending or simply known as the engineering beam
theory. For a differential element dx of the beam as shown in Figure 3.2, the relationships between
deflection, slope, load, shear, and moment are given in the form of differential equations as

d2w

dx2
= M

EI
(3.3)

d3w

dx3
= 1

EI

dM

dx
= S

EI
(3.4)

d4w

dx4
= 1

EI

dS

dx
= q(x)

EI
(3.5)

where w, M, S, EI, and q(x) represent respectively the deflection, moment, shear force, stiffness,
and uniformly distributed load.

3.2 STIFFNESS MATRIX

It is possible to develop the matrix relationship between the nodal forces, {F1, M1, F2, M2}T , and
the nodal displacements, {w1, θ1, w2, θ2}T , by integrating the differential equations (3.3) through
(3.5). The integration produces constants of integration that can be identified by considering the
boundary conditions of the element. A simpler way of establishing the matrix relationship is to
operate as for the bar element (see Section 2.2.1). It consists in placing simple supports at each end
of the beam, then set the degrees of freedom to unity one at a time, and calculate the nodal forces
needed to produce the deformed state. The reactions at the supports resulting from the imposition of
unit displacements/rotations at the nodes are called stiffness influence coefficients. To obtain these
coefficients, we will use the theorem of Castigliano.

63
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FIGURE 3.1 Beam element. (a) Forces and (b) displacements.
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q(x) + dq(x)
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x

FIGURE 3.2 Differential element of a beam.

ROTATION θ2

Consider the beam element shown in Figure 3.3a. The member is initially straight. If we try to rotate
node 2 by an amount θ2, then reaction forces will be developed at nodes 1 and 2. Considering vertical
equilibrium yields

Fy1 + Fy2 = 0 (3.6)

Taking moments around z with respect to node 2 gives

M1 + M2 − Fy1L = 0 (3.7)

Taking moments around z with respect to x as shown yields

M(x) = −M1 + Fy1x (3.8)

The moment M(x) may also be written as a function of M2:

M(x) = −Fy1(L − x) + M2 (3.9)
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x
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FIGURE 3.3 Nodal degrees of freedom. (a) Rotation θ2, (b) rotation θ1, (c) displacement w2, and
(d) displacement w1.

The strain energy of a beam in bending is given as

� =
L�

0

M(x)2

2EI
dx = 1

2EI

L�
0

(−Fy1(L − x) + M2)
2dx

= 1

2EI

(
F2

y1

L3

3
+ M2

2L − Fy1M2L
2

)
(3.10)

Using the theorem of Castigliano and taking the derivative with respect to Fy1 yields

∂�

∂Fy1

= 2

3
L3Fy1 − M2L2 = w1 = 0 (3.11)

and

∂�

∂M2

= 1

2EI
(2M2L − Fy1L2) = θ2 (3.12)

Solving for M2 and Fy1 using Equations (3.11) and (3.12) yields

M2 = 4EI

L
θ2 (3.13)

Fy1 = 6EI

L2
θ2 (3.14)

Since M1 + M2 − Fy1 = 0, we also have

M1 = 2EI

L
θ2 (3.15)
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ROTATION θ1

By simply transposing the suffices, similar expressions can be obtained for M1, M2, and Fy2 when
considering a rotation θ1 (Figure 3.3b); that is,

M1 = 4EI

L
θ1 (3.16)

M2 = 2EI

L
θ2 (3.17)

Fy2 = 6EI

L2
θ1 (3.18)

DISPLACEMENT w2

The initially straight member is now given a vertical displacement w2 as represented in Figure 3.3c.
The bending moment at a distance x is obtained as

M(x) = −M1 + Fy1x (3.19)

or as

M(x) = −M1 − Fy2x (3.20)

Substituting in the expression of the bending energy yields

� =
L�

0

M(x)2

2EI
dx = 1

2EI

L�
0

(−M1 − Fy2x)2dx

= 1

2EI

(
M2

1L + F2
y2

L3

3
+ Fy2M1L2

)
(3.21)

Using the theorem of Castigliano, we obtain

∂�

∂M1

= 1

2EI
(2M1L + Fy2L2) = θ1 = 0 (3.22)

and

∂�

∂Fy2

= 1

2EI

(
2Fy2

L3

3
+ M1L2

)
= w2 (3.23)

Solving for M1 and Fy2 using Equations (3.22) and (3.23) yields

M1 = −6EI

L2
w2 (3.24)

Fy2 = 12EI

L3
w2 (3.25)

From equilibrium of the moments, we obtain M2 as

M2 = −6EI

L2
w2 (3.26)
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DISPLACEMENT w1

Again, by simply transposing the suffices, similar expressions can be obtained for M1, M2, and Fy1;
when considering a displacement w1 (Figure 3.3d); that is,

M1 = −6EI

L2
w1 (3.27)

M2 = −6EI

L2
w1 (3.28)

Fy1 = 12EI

L3
w1 (3.29)

The preceding results can be grouped in a matrix form:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Fy1

M1

Fy2

M2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎣

12EI/L3 6EI/L2 −12EI/L3 6EI/L2

6EI/L2 4EI/L −6EI/L2 2EI/L

−12EI/L3 −6EI/L2 12EI/L3 −6EI/L2

6EI/L2 2EI/L −6EI/L2 4EI/L

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w1

θ1

w2

θ2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.30)

or simply as

{ fe} = [Ke]{δe} (3.31)

where [Ke] is the stiffness matrix that relates the nodal displacements to the nodal forces.

3.3 UNIFORMLY DISTRIBUTED LOADING

The stiffness matrix for a beam element was developed for loadings applied only at its nodes. Quite
often, however, beams support uniformly distributed loading along (or part of) their length. This
requires modification in order to be used in an analysis. The distributed loading is replaced by a
system of statically equivalent nodal forces that are always of opposite sign from the fixed end
reactions, as shown in Figure 3.4. Figure B.1 in Appendix B shows the equivalent nodal loads for
the most common loadings on beams.

The displacements computed using equivalent nodal loads are exact in a finite element sense;
however, the internal reactions computed in individual elements using the relation {Fe} = [Ke]{de}
are not. Instead, to obtain the correct internal reactions, the following relation must be used:

{Fe} = [Ke]{de} − {F0} (3.32)

where {F0} represents the vector of equivalent nodal forces at element level.
To illustrate the computation of the reaction forces, let us consider a beam for which a solution

can be easily obtained. Such a beam is presented in Figure 3.5 together with the bending moment
and shear force diagrams, which have been obtained with the method of moment distribution.

From the shear force diagram, the support reactions at A, B, and C are, respectively, given as

RA = 1.6 kN ↓ RB = 11.8 kN ↑ RC = 1.8 kN ↑ (3.33)
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FIGURE 3.4 Statically equivalent nodal loads.
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FIGURE 3.5 Loading, bending moment, and shear force diagrams.
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From the bending moment diagrams, the support moments are obtained as

MA = 1.6 kN.m � MB = 3.2 kN.m �� MC = 10.4 kN.m � (3.34)

Using the finite element method, let us calculate these support reactions.

Element AB:
Considering that the beam is made of steel with an elastic modulus of 200 × 106 kN/m2, and using
a consistent set of units, kN and m, from Equation (3.30) the stiffness matrix of element AB is
obtained as

[KAB] =

⎡
⎢⎢⎢⎢⎣

10667 16000 10667 16000

16000 32000 16000 16000

−10667 −16000 10667 −16000

16000 16000 −16000 32000

⎤
⎥⎥⎥⎥⎦ (3.35)

Element AB is not subjected to any external loading

{FAB} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0

0

0

0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.36)

Element BC:

[KBC] =

⎡
⎢⎢⎢⎢⎣

9000 18000 −9000 18000

18000 48000 −18000 24000

−9000 −18000 9000 −18000

18000 24000 −18000 48000

⎤
⎥⎥⎥⎥⎦ (3.37)

The applied uniformly distributed load is transformed into equivalent static loads as shown in
Figure 3.4:

{FAB} =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−qL/2 = −12 kN

−qL2/12 = −8 kN.m

−qL/2 = −12 kN

qL2/12 = 8 kN.m

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.38)

Assembling the global stiffness matrix and force vector results in

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10667 16000 10667 16000 0 0

16000 32000 16000 16000 0 0

−10667 −16000 19667 2000 −9000 18000

16000 16000 2000 80000 −18000 24000

0 0 −9000 −18000 9000 −18000

0 0 18000 24000 −18000 48000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wA

θA

wB

θB

wC

θC

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

0

−12

−8

−12

8

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.39)

© 2013 by Taylor & Francis Group, LLC



70 Introduction to Finite Element Analysis Using MATLAB� and Abaqus

The boundary conditions for the beam are given as

wA = θA = wB = wC = θC = 0 (3.40)

Eliminating the lines and columns corresponding to these degrees of freedom results in one single
equation:

80000 × θB = −8 =⇒ θB = −0.0001rd (3.41)

The results for each span will be computed individually.
The nodal displacements of element AB are obtained as

{dAB} =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

wA = 0

θA = 0

wB = 0

θB = −0.0001

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.42)

The final reactions for element AB are caused by the rotation of joint B

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

VA

MA

VB1

MB

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎣

10667 16000 10667 16000

16000 32000 16000 16000

−10667 −16000 10667 −16000

16000 16000 −16000 32000

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0

0

0

−0.0001

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1.6

−1.6

1.6

−3.2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.43)

It can be noticed that

VA = RA = 1.6 kN ↓
MA = 1.6 kN.m �

MB = 3.2 kN.m �

As to the notation VB1, it means that only the end shear at point B is considered. The total reaction at
B is equal to the end shear from element AB plus the end shear at point B from element BC, that is

RB = VB1 + VB2

Similarly, the final reactions for element BC are caused by joint B rotation minus the equivalent
nodal loads that replaced the uniformly distributed load, that is

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

VB2

MB

VC

MC

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎣

9000 18000 −9000 18000

18000 48000 −18000 24000

−9000 −18000 9000 −18000

18000 24000 −18000 48000

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0

−0.0001

0

0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

−

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−12

−8

−12

8

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

10.2

3.2

13.8

−10.4

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
(3.44)

Finally, we obtain

RB = VB1 + VB2 = 1.6 + 10.2 = 11.8 kN

The final results shown in Figure 3.6 are exactly the same as the ones shown in Figure 3.5.
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1.6 kN.m

1.6 kN

1.6 kN

10.2 kN

6 kN/m

13.8 kN

10.4 kN.m

3.2 kN.m

FIGURE 3.6 Support reactions for individual members.

3.4 INTERNAL HINGE

In some cases, a beam may contain an internal hinge, which results in a discontinuity in the slope
of the deflection curve as well as a zero value of the bending moment. If we are to analyze the
beam shown in Figure 3.7 using the finite element method, we will discretize the beam using two
elements. The hinge should be accounted for only once; either associated with element 1 or with
element 2. If the beam is discretized with two elements, one with a hinge at its right end and the
other with a hinge at its left, the result will be a singular stiffness matrix. Using Equation (3.30), the
force–displacement relationship for element 1 is written as

⎡
⎢⎢⎢⎢⎣

12EI/L3 6EI/L2 −12EI/L3 6EI/L2

6EI/L2 4EI/L −6EI/L2 2EI/L

−12EI/L3 −6EI/L2 12EI/L3 −6EI/L2

6EI/L2 2EI/L −6EI/L2 4EI/L

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w11

θ11

w12

θ12

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F11

M11

F12

M12 = 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.45)

To eliminate the moment M12, which is equal to zero, we partition the system of equations as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12EI/L3 6EI/L2 −12EI/L3
... 6EI/L2

6EI/L2 4EI/L −6EI/L2
... 2EI/L

−12EI/L3 −6EI/L2 12EI/L3
... −6EI/L2

· · · · · · · · · · · · · · ·
6EI/L2 2EI/L −6EI/L2

... 4EI/L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

w11

θ11

w12

· · ·
θ12

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

F11

M11

F12

· · ·
M12 = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(3.46)

L

Internal hinge

FIGURE 3.7 Beam with an internal hinge.
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or in a more compact form as
⎡
⎢⎢⎢⎢⎣

k11

... k12

· · · · · · · · ·

k21

... k22

⎤
⎥⎥⎥⎥⎦

⎧⎪⎨
⎪⎩

d

· · ·
θ12

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

F

· · ·
M12 = 0

⎫⎪⎬
⎪⎭ (3.47)

Expanding Equation (3.47) yields

[k11] {d} + [k12] {θ12} = {F} (3.48)

[k21] {d} + [k22] {θ12} = {M12}
Solving for {θ12} using the second equation of (3.48) yields

{θ12} = [k22]−1
({M12} − [k21] {d}) (3.49)

Substituting for {θ12} in the first equation of (3.48) and rearranging yields

(
[k11] − [k12] [k22]−1 [k21]

) {d} = ({F} − [k12] [k22]−1 {M12}
)

(3.50)

or in a more compact form as

[KC] {d} = {FC} (3.51)

where [KC] is a condensed matrix. When the partitioned parts of Equation (3.48) are substituted in
Equation (3.51), the condensed matrix becomes

[KC] =
⎡
⎢⎣

3EI/L3 3EI/L2 −3EI/L3

EI/L2 3EI/L −3EI/L2

−3EI/L3 −3EI/L2 3EI/L3

⎤
⎥⎦ (3.52)

It is true that moment M12 is equal to zero at the hinge, but not the rotation θ12, and, as such, it should
not have been eliminated from Equation (3.51). To include the rotation θ12, we expand Equation
(3.51) as follows:

⎡
⎢⎢⎢⎢⎣

3EI/L3 3EI/L2 −3EI/L3 0

3EI/L2 3EI/L −3EI/L2 0

−3EI/L3 −3EI/L2 3EI/L3 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w11

θ11

w12

θ12

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F11

M11

F12

M12

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.53)

For element 2 with a hinge at its left end, Equation (3.53) is rewritten as

⎡
⎢⎢⎢⎢⎣

3EI/L3 0 −3EI/L3 3EI/L2

0 0 0 0

−3EI/L3 0 3EI/L3 −3EI/L2

3EI/L2 0 −3EI/L2 3EI/L

⎤
⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

w21

θ21

w22

θ22

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

F21

M21

F22

M22

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.54)

It is very important that the hinge should be accounted for only once. Otherwise, the result will be a
singular stiffness matrix (Figure 3.8).
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M11 θ11

θ12 θ21 θ22

M22M12 = M21 = 0

Element 1 Element 2

F22W22F21W21F12W12F11W11

FIGURE 3.8 Beam elements with a hinge.

3.5 COMPUTER CODE: BEAM.m

Except for slight differences that need to be taken into account, writing a MATLAB� code for the
analysis of slender beams is not much different from that for a truss structure. First, the elements’
stiffness do not need to be transformed from local to global coordinates. Second, each element will
have two types of loading: one that consists of the external forces directly applied to the nodes and
another that only consists of the statically equivalent nodal loads. Therefore, in the development of
the program BEAM.m, we will follow the same style as that used in the program TRUSS.m.

Let us consider the beam shown in Figure 3.9.

3.5.1 DATA PREPARATION

To read the data, we will use the M-file beam_1_data.m. Again, we will use a consistent set of
units: mm for length and N for force.

The input data for this beam consist of the following:

• nnd = 4; number of nodes
• nel = 3; number of elements
• nne = 2; number of nodes per element
• nodof = 2; number of degrees of freedom per node

3.5.1.1 Nodes Coordinates

The abscissae x of the nodes are given in the form of a vector geom(nnd, 1):

geom =

⎡
⎢⎢⎢⎣

0

4000

9000

16000

⎤
⎥⎥⎥⎦

11

2 m

20 kN

4 m 5 m 7 m

4 kN/m

2 2 3 3 4

E = 200 000 MPa, I = 200 × 106 mm4

FIGURE 3.9 Example of a continuous beam.
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3.5.1.2 Element Connectivity

The table of connectivity describes how the elements are connected to each other. The element
connectivity is given in the matrix connec(nel, 2):

connec =
⎡
⎢⎣

1 2

2 3

3 4

⎤
⎥⎦

3.5.1.3 Material and Geometrical Properties

The material and geometrical properties are given in the matrix prop(nel, 2). The first column
represents the Young’s modulus while the second represents the second moment of inertia of the
cross section:

prop =
⎡
⎢⎣

200000 200.e + 6

200000 200.e + 6

200000 200.e + 6

⎤
⎥⎦

3.5.1.4 Boundary Conditions

In the same fashion as for the truss, a restrained degree of freedom is assigned the digit 0, while a
free degree of freedom is assigned the digit 1. As previously explained, a node in a beam element
has two degrees of freedom: a vertical translation along the axis y and a rotation around the axis
z perpendicular to the plan xy. As shown in Figure 3.9, nodes 1 and 4 are fully fixed (encastré).
Their degrees of freedom are all assigned the digit 0. Nodes 2 and 3 are simple supports. They
are restrained vertically but are free to rotate. Therefore, their degrees of freedom w and θ are
respectively assigned the digits 0 and 1. The information on the boundary conditions is given in the
matrix nf(nnd, nodof):

nf =

⎡
⎢⎢⎢⎣

0 0

0 1

0 1

0 0

⎤
⎥⎥⎥⎦

The free degrees of freedom (different from zero) are then counted and their rank assigned back into
the matrix nf(nnd, nodof):

nf =

⎡
⎢⎢⎢⎣

0 0

0 1

0 2

0 0

⎤
⎥⎥⎥⎦

In this case, the total number of active degrees of freedom is obtained as n = 2.

3.5.1.5 Internal Hinges

To account for internal hinges, we create a vector Hinge(nel, 2) that we initialize to 1. If a particular
element k has a hinge at its left end, then we assign it the digit 0 at the position of its first node;
that is,

Hinge(k, 1) = 0
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On the other hand, the hinge may be accounted for with the element j having it at its right. In that
case, we assign it the digit 0 at the position of its second node; that is,

Hinge(j, 2) = 0

A hinge must be considered for one element only.

3.5.1.6 Loading

When it comes to loading, a beam element differs from a rod element. As previously explained,
a beam element can have two types of loading: loads applied directly at the nodes and statically
equivalent nodal loads. A good computer code should cater for both loadings. To distinguish between
the two loading systems, we will use two matrices: Joint_loads(nnd, 2) and Element_loads(nel, 4).

There are no loads applied directly at the nodes. Therefore, the matrix Joint_loads(nnd, 2) is
empty:

Joint_loads =

⎡
⎢⎢⎢⎣

0 0

0 0

0 0

0 0

⎤
⎥⎥⎥⎦

Elements 1 and 2 have loads applied along their length, which need to be transformed to statically
equivalent nodal loads, as shown in Figure 3.9

Element Fy1 M1 Fy2 M2

1 −104 −107 −104 107

2 −104 −8.333 × 106 −104 8.333 × 106

3 0 0 0 0

These data are stored in the M-file beam_1_data.m in the matrix Element_loads.
The two systems of loads are added to form the global force vector F(n). This is carried out in

the M-file form_beam_F.m as follows:

• Joint loads: To assemble the nodal loads, we create a loop over the nodes. If a degree
of freedom nf(i, j) is not restrained, then it is susceptible of carrying a load. That load is
Joint_loads(i, j), and it is assembled into the global force vector at the position F(nf(i, j)).

• Element loads: To assemble the statically equivalent nodal loads, we create a loop over the
elements. Since the loads are element based, we need the “steering vector” g containing the
number of the degrees of freedom of the nodes of the element. It is formed in the same way
as in the program truss.m. The script is given in the M-file beam_g.m. Then, we create
a loop over the degrees of freedom of the element. If a degree of freedom nf(i, j) is not
restrained, then it is susceptible of carrying a load. That load is Element_loads(i, j), and it
is assembled into global force vector at the position F(g(j)).

The data preparation is now complete, and the model data are written to the file
beam_1_results.txt using the M-file print_beam_model.m. At this stage, it is possible to initialize
the global matrix KK(n, n) = 0:

KK =
[

0 0

0 0

]
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Again, we will only assemble the quantities corresponding to the active degrees of freedom; that
is, the lines and the columns in the matrix KK corresponding respectively to the active degrees of
freedom 1 and 2. The restrained degrees of freedom, with a number equal to 0, will be eliminated.

3.5.1.7 Stiffness Matrix

For a beam element, there is no need to transform the element stiffness matrix from local to global
coordinates since both sets of axes are colinear. Therefore, for each element, from 1 to nel, we set
up the local stiffness matrix and directly assemble it into the global stiffness matrix KK.

For any element i, we retrieve its first and second nodes from the connectivity matrix:

node_1 = connec(i, 1)

node_2 = connec(i, 2)

Then using the values of the nodes, we retrieve their x coordinates from the geometry matrix:

x1 = geom(node_1);

x2 = geom(node_2);

Next, we evaluate the length of the element as

L = |x2 − x1|

Finally, we retrieve the material and geometrical property of the section

E = prop(i, 1); I = prop(i, 2)

Depending on whether nodes 1 or 2 are internal hinges, we evaluate the stiffness matrix kl as follows:

• if Hinge(i, node_1) = 0, evaluate the matrix kl using Equation (3.53)
• if Hinge(i, node_2) = 0, evaluate the matrix kl using Equation (3.52)
• else, evaluate the matrix kl using Equation 3.30

The MATLAB script for evaluating the matrix kl is given in the M-file beam_k.m.

3.5.2 ASSEMBLY AND SOLUTION OF THE GLOBAL SYSTEM OF EQUATIONS

The global stiffness matrix [KK] is assembled using the same script form_KK.m as in the program
truss.m. The global displacements vector delta is obtained as

delta = KK\F

3.5.3 NODAL DISPLACEMENTS

To retrieve the nodal displacements, a loop is carried over all the nodes. If a degree of freedom j of
a node i is free, that is, nf(i, j) �= 0, then it could have a displacement different from zero. The value
of the displacement is extracted from the global displacements vector delta:

node_disp(i, j) = delta(nf(i, j))
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3.5.4 ELEMENT FORCES

To obtain the member forces, a loop is carried over all the elements:

1. Form element stiffness matrix [kl]
2. Form element “steering” vector {g}

a. Loop over the degrees of freedom of the element to obtain element displacements
vector edg

b. If g(j) = 0, then the degree of freedom is restrained; ed(j) = 0
c. Otherwise ed(j) = delta(g(j))

3. Obtain element force vector due to joint loads as
{fl} = [kl] ∗ {ed}

4. Obtain element equivalent nodal forces as
{f0} = Element_loads(i, :).

5. Obtain element forces as
force(i, :) = {fl} − {f0}

The results of the analysis are written to the file beam_1_results.txt using the M-file
print_beam_results.m. A copy of the file beam_1_results.txt is included within the section
Program scripts.

File:beam.m
% beam.m
%
% LINEAR STATIC ANALYSIS OF A CONTINUOUS BEAM
%
clc % Clear screen
clear % Clear all variables in memory
%
% Make these variables global so they can be shared
% by other functions
%
global nnd nel nne nodof eldof n geom connec F ...

prop nf Element_loads Joint_loads force Hinge
%
disp(’Executing beam.m’);
%
% Open file for output of results
%%
% ALTER THE NEXT LINES TO CHOOSE AN OUTPUT FILE FOR THE RESULTS
%
disp(’Results printed to file : beam_1_results.txt ’); fid
=fopen(’beam_1_results.txt’,’w’);
%
%
% ALTER THE NEXT LINE TO CHOOSE AN INPUT FILE
%
beam_1_data % Load the input file
%
%
KK =zeros(n) ; % Initialize global stiffness

% matrix to zero
%
F=zeros(n,1); % Initialize global force vector to zero
F = form_beam_F(F); % Form global force vector
%
print_beam_model % Print model data
%
for i=1:nel
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kl=beam_k(i); % Form element matrix
%

g=beam_g(i) ; % Retrieve the element steering
% vector

%
KK =form_KK(KK, kl, g); % assemble global stiffness

% matrix
%
end
%
%%%%%%%%%%%% End of assembly %%%%%%%%%%%
%
%
delta = KK\F ; % solve for unknown displacements
%
% Extract nodal displacements
%
for i=1:nnd

for j=1:nodof
node_disp(i,j) = 0;
if nf(i,j)~= 0;
node_disp(i,j) = delta(nf(i,j)) ;
end

end
end
%
% Calculate the forces acting on each element
% in local coordinates, and store them in the
% vector force().
%
for i=1:nel

kl=beam_k(i); % Form element matrix
%

g=beam_g(i) ; % Retrieve the element steering vector
for j=1:eldof

if g(j)== 0
ed(j)=0.; % displacement = 0. for restrained freedom

else
ed(j) = delta(g(j));

end
end
fl = kl*ed’ % Element force vector in global XY
f0 = Element_loads(i,:)
force(i,:) = fl-f0’

end
%
print_beam_results;
%
fclose(fid);

File:beam_1_data.m
% File: Beam_1_data.m
%
% The following variables are declared as global in order
% to be used by all the functions (M-files) constituting
% the program
%
global nnd nel nne nodof eldof n geom connec ...

prop nf Element_loads Joint_loads Hinge
%
format short e
%
%%%%%%%%%%%%%% Beginning of data input %%%%%%%%%%%%%%%%
%
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nnd = 4; % Number of nodes:
nel = 3; % Number of elements:
nne = 2 ; % Number of nodes per element:
nodof =2 ; % Number of degrees of freedom per node
eldof = nne*nodof; % Number of degrees of freedom

% per element
%
% Nodes coordinates X and Y
geom=zeros(nnd,1);
geom= [ 0.; ... % X coord. node 1

4000.;... % X coord. node 2
9000.;... % X coord. node 3
16000. ] ; % X coord. node 4

%
% Element connectivity
%
connec=zeros(nel,2);
connec = [1 2 ; ... % 1st and 2nd node of element 1

2 3 ; ... % 1st and 2nd node of element 2
3 4 ]; % 1st and 2nd node of element 3

%
% Geometrical properties
%
% prop(1,1) = E; prop(1,2)= I
%
prop=zeros(nel,2);
prop = [200000 200.e+6; ... % E and I of element 1

200000 200.e+6; ... % E and I of element 2
200000 200.e+6]; % E and I of element 3

%
% Boundary conditions
%
nf = ones(nnd, nodof); % Initialize the matrix nf to 1
nf(1,1) = 0; nf(1,2) =0 ; % Prescribed nodal freedom of node 1
nf(2,1) = 0; % Prescribed nodal freedom of node 2
nf(3,1) = 0; % Prescribed nodal freedom of node 3
nf(4,1) = 0; nf(4,2)= 0 ; % Prescribed nodal freedom of node 4

%
% Counting of the free degrees of freedom
%
n=0;
for i=1:nnd

for j=1:nodof
if nf(i,j) ~= 0
n=n+1;
nf(i,j)=n;
end

end
end
%
%
% Internal Hinges
%
Hinge = ones(nel, 2);
%
% loading
%
Joint_loads= zeros(nnd, 2);
% Enter here the forces in X and Y directions at node i
%
Element_loads= zeros(nel, 4);
Element_loads(1,:)= [ -1.e4 -1.e7 -1.e4 1.e7];
Element_loads(2,:)= [ -1.e4 -8.333e6 -1.e4 8.333e6 ];
%
%%%%%%%%%%%%%%%%%%%%%%% End of input %%%%%%%%%%%%%%%%%%%%%%

© 2013 by Taylor & Francis Group, LLC



80 Introduction to Finite Element Analysis Using MATLAB� and Abaqus

File:beam_1_results.m
******* PRINTING MODEL DATA **************

------------------------------------------------------
Number of nodes: 4
Number of elements: 3
Number of nodes per element: 2
Number of degrees of freedom per node: 2
Number of degrees of freedom per element: 4

------------------------------------------------------
Node X
1, 0000.00
2, 4000.00
3, 9000.00
4, 16000.00

------------------------------------------------------
Element Node_1 Node_2

1, 1, 2
2, 2, 3
3, 3, 4

------------------------------------------------------
Element E I

1, 200000, 2e+008
2, 200000, 2e+008
3, 200000, 2e+008

------------------------------------------------------
-------------Nodal freedom----------------------------
Node disp_w Rotation
1, 0, 0
2, 0, 1
3, 0, 2
4, 0, 0

------------------------------------------------------
-----------------Applied Nodal Loads-------------------
Node load_Y Moment
1, 0000.00, 0000.00
2, 0000.00, 1667000.00
3, 0000.00, 8333000.00
4, 0000.00, 0000.00

------------------------------------------------------

Total number of active degrees of freedom, n = 2

--------------------------------------------------------

******* PRINTING ANALYSIS RESULTS **************

------------------------------------------------------
Global force vector F

1.667e+006
8.333e+006

------------------------------------------------------
Displacement solution vector: delta
-0.00001
0.00016

------------------------------------------------------
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9.77 kN.m 1.773.543.544 kN/m10.410.4
20 kN

9.8 kN 10.17 11.38 8.62 0.76 0.76

FIGURE 3.10 Example 1: Continuous beam results.

Nodal displacements
Node disp_y rotation
1, 0.00000, 0.00000
2, 0.00000, -0.00001
3, 0.00000, 0.00016
4, 0.00000, 0.00000

------------------------------------------------------
Members actions
element fy1 M1 Fy2 M2
1, 9829.92, 9773230.20, 10170.08, -10453539.60
2, 11381.17, 10453539.60, 8618.83, -3547673.27
3, 760.22, 3547673.27, -760.22, 1773836.63

The results are shown graphically for each element in Figure 3.10.

3.6 PROBLEMS

Prepare a data file for the beams shown next and carry out the analysis using the code beam.m.

3.6.1 PROBLEM 3.1 (FIGURE 3.11)

Input file

% File: Beam_problem1_data.m
%
% The following variables are declared as global in order
% to be used by all the functions (M-files) constituting
% the program
%
global nnd nel nne nodof eldof n geom connec ...

prop nf Element_loads Joint_loads Hinge
%
format short e
%

4 m

1 1 2 2
3

3 4 4 5

6 m 4 m 8 m

20 kN

5 kN/m
5 kN/m

E = 200,000 MPa, I = 200 × 106 mm4

FIGURE 3.11 Problem 3.1.
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%%%%%%%%%%%%%% Beginning of data input %%%%%%%%%%%%%%%%
%
nnd = 5; % Number of nodes:
nel = 4; % Number of elements:
nne = 2 ; % Number of nodes per element:
nodof =2 ; % Number of degrees of freedom per node
eldof = nne*nodof; % Number of degrees of freedom

% per element
%
% Nodes coordinates X and Y
geom=zeros(nnd,1);
geom = [ 0.; ... % X coord. node 1

4000.; ... % X coord. node 2
10000.; ... % X coord. node 3
14000.; ... % X coord. node 4
22000.] ; % X coord. node 5

%
% Element connectivity
%
connec=zeros(nel,2);
connec = [1 2 ; ... % 1st and 2nd node of element 1

2 3 ; ... % 1st and 2nd node of element 2
3 4 ; ... % 1st and 2nd node of element 3
4 5 ]; % 1st and 2nd node of element 4

%
% Geometrical properties
%
prop=zeros(nel,2);
prop = [ 200000 200.e+6; ... % E and I of element 1

200000 200.e+6; ... % E and I of element 2
200000 200.e+6; ... % E and I of element 3
200000 200.e+6 ]; % E and I of element 4

%
% Boundary conditions
%
nf = ones(nnd, nodof); % Initialize the matrix nf to 1
nf(1,1) = 0; nf(1,2) =0 ; % Prescribed nodal freedom of node 1
nf(3,1) = 0; % Prescribed nodal freedom of node 3
%
% Counting of the free degrees of freedom
%
n=0;
for i=1:nnd

for j=1:nodof
if nf(i,j) ~= 0
n=n+1;
nf(i,j)=n;
end

end
end
%
%
% Internal Hinges
%
Hinge = ones(nel, 2);
%
% loading
%
Joint_loads= zeros(nnd, 2);
Joint_loads(2,:)=[-20000 -5e+6]
%
Element_loads= zeros(nel, 4);
Element_loads(4,:)= [ -2.e4 -2.66666e7 -2.e4 2.66666e7];

%
%%%%%%%%%%%%%%%%%%%%%%% End of input %%%%%%%%%%%%%%%%%%%%%%

© 2013 by Taylor & Francis Group, LLC



Beam Element 83

Results file

******* PRINTING MODEL DATA **************

------------------------------------------------------
Number of nodes: 5
Number of elements: 4
Number of nodes per element: 2
Number of degrees of freedom per node: 2
Number of degrees of freedom per element: 4

------------------------------------------------------
Node X
1, 0000.00
2, 4000.00
3, 10000.00
4, 14000.00
5, 22000.00

------------------------------------------------------
Element Node_1 Node_2

1, 1, 2
2, 2, 3
3, 3, 4
4, 4, 5

------------------------------------------------------
Element E I

1, 200000, 2e+008
2, 200000, 2e+008
3, 200000, 2e+008
4, 200000, 2e+008

------------------------------------------------------
-------------Nodal freedom----------------------------
Node disp_w Rotation
1, 0, 0
2, 1, 2
3, 0, 3
4, 4, 5
5, 6, 7

------------------------------------------------------
-----------------Applied Nodal Loads-------------------
Node load_Y Moment
1, 0000.00, 0000.00
2, -20000.00, -5000000.00
3, 0000.00, 0000.00
4, -20000.00, -26666600.00
5, -20000.00, 26666600.00

------------------------------------------------------

Total number of active degrees of freedom, n = 7

--------------------------------------------------------

******* PRINTING ANALYSIS RESULTS **************

------------------------------------------------------
Global force vector F

-20000
-5e+006
0
-20000
-2.66666e+007
-20000
2.66666e+007
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------------------------------------------------------
Displacement solution vector: delta
15.57600
0.00561
-0.01870
-128.13333
-0.04270
-533.73339
-0.05337

------------------------------------------------------
Nodal displacements
Node disp_y rotation
1, 0.00000, 0.00000
2, 15.57600, 0.00561
3, 0.00000, -0.01870
4, -128.13333, -0.04270
5, -533.73339, -0.05337

------------------------------------------------------
Members actions
element fy1 M1 Fy2 M2
1, -32640.00, -121400000.00, 32640.00, -9160000.00
2, -52640.00, 4160000.00, 52640.00, -320000000.00
3, 40000.00, 320000000.00, -40000.00, -160000000.00
4, 40000.00, 160000000.00, -0.00, 0.00

3.6.2 PROBLEM 3.2 (FIGURE 3.12)

Input file

% File: Beam_problem2_data.m
%
% The following variables are declared as global in order
% to be used by all the functions (M-files) constituting
% the program
%
global nnd nel nne nodof eldof n geom connec ...

prop nf Element_loads Joint_loads Hinge
%

7.5 7.5 4.375

7.2916 1.0416

1.875

3.753.75

Equivalent nodal loads

2 m

20 kN
5 kN/m

2 m 3 m 2.5 m

1 1 2 2 3 3 4 4 5

E = 200 × 106 kN/m2,
I = 600 × 10–6 m4

E = 200 × 106 kN/m2,
I = 300 × 10–6 m4

Element 3 Element 4

FIGURE 3.12 Problem 3.2 and equivalent nodal loads for elements 3 and 4.
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format short e
%
%%%%%%%%%%%%%% Beginning of data input %%%%%%%%%%%%%%%%
%
nnd = 5; % Number of nodes:
nel = 4; % Number of elements:
nne = 2 ; % Number of nodes per element:
nodof =2 ; % Number of degrees of freedom per node
eldof = nne*nodof; % Number of degrees of freedom

% per element
%
% Nodes coordinates X and Y
geom=zeros(nnd,1);
geom = [0.; ... % X coord. node 1

2.; ... % X coord. node 2
4.; ... % X coord. node 3
7.; ... % X coord. node 4
9.5] ; % X coord. node 5

%
% Element connectivity
%
connec=zeros(nel,2);
connec = [1 2 ; ... % 1st and 2nd node of element 1

2 3 ; ... % 1st and 2nd node of element 2
3 4 ; ... % 1st and 2nd node of element 3
4 5]; % 1st and 2nd node of element 4

%
% Geometrical properties
%
% prop(1,1) = E; prop(1,2)= I
%
prop=zeros(nel,2);
prop = [200e+6 600.e-6; ... % E and I of element 1

200e+6 600.e-6; ... % E and I of element 2
200e+6 300.e-6; ... % E and I of element 3
200e+6 300.e-6] ; % E and I of element 4

%
% Boundary conditions
%
nf = ones(nnd, nodof); % Initialize the matrix nf to 1
nf(1,1) = 0; ; % Prescribed nodal freedom of node 1
nf(4,1) = 0; % Prescribed nodal freedom of node 3
%
% Counting of the free degrees of freedom
%
n=0;
for i=1:nnd

for j=1:nodof
if nf(i,j) ~= 0
n=n+1;
nf(i,j)=n;
end

end
end
%
%
% Internal Hinges
%
Hinge = ones(nel, 2);
%
% loading
%
Joint_loads= zeros(nnd, 2);
Joint_loads(2,:)=[-20 0]
%
Element_loads= zeros(nel, 4);
Element_loads(3,:)= [ -7.5 -3.75 -7.5 3.75];
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Element_loads(4,:)= [ -4.375 -7.2916 -1.875 1.0416];
%
%%%%%%%%%%%%%%%%%%%%%%% End of input %%%%%%%%%%%%%%%%%%%%%%

Results file

******* PRINTING MODEL DATA **************

------------------------------------------------------
Number of nodes: 5
Number of elements: 4
Number of nodes per element: 2
Number of degrees of freedom per node: 2
Number of degrees of freedom per element: 4

------------------------------------------------------
Node X
1, 0000.00
2, 0002.00
3, 0004.00
4, 0007.00
5, 0009.50

------------------------------------------------------
Element Node_1 Node_2

1, 1, 2
2, 2, 3
3, 3, 4
4, 4, 5

------------------------------------------------------
Element E I

1, 2e+008, 0.0006
2, 2e+008, 0.0006
3, 2e+008, 0.0003
4, 2e+008, 0.0003

------------------------------------------------------
-------------Nodal freedom----------------------------
Node disp_w Rotation
1, 0, 1
2, 2, 3
3, 4, 5
4, 0, 6
5, 7, 8

------------------------------------------------------
-----------------Applied Nodal Loads-------------------
Node load_Y Moment
1, 0000.00, 0000.00
2, -020.00, 0000.00
3, -007.50, -003.75
4, 0000.00, -003.54
5, -001.88, 0001.04

------------------------------------------------------

Total number of active degrees of freedom, n = 8

--------------------------------------------------------

******* PRINTING ANALYSIS RESULTS **************

------------------------------------------------------
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Global force vector F
0
-20
0
-7.5
-3.75
-3.5416
-1.875
1.0416

------------------------------------------------------
Displacement solution vector: delta
-0.00065
-0.00113
-0.00039
-0.00142
0.00008
0.00058
0.00135
0.00053

------------------------------------------------------
Nodal displacements
Node disp_y rotation
1, 0.00000, -0.00065
2, -0.00113, -0.00039
3, -0.00142, 0.00008
4, 0.00000, 0.00058
5, 0.00135, 0.00053

------------------------------------------------------
Members actions
element fy1 M1 Fy2 M2
1, 15.94, -0.00, -15.94, 31.88
2, -4.06, -31.87, 4.06, 23.75
3, -4.06, -23.75, 19.06, -10.94
4, 6.25, 10.94, 0.00, 0.00

3.6.3 PROBLEM 3.3 (FIGURE 3.13)

Input file

% File: beam_problem3_data.m
%
% The following variables are declared as global in order
% to be used by all the functions (M-files) constituting
% the program
%
global nnd nel nne nodof eldof n geom connec ...

prop nf Element_loads Joint_loads Hinge
%

4 m 4 m 6 m

4332211

12 kN

Internal hinge

E = 200 × 106 kN/m2,
I = 600 × 10–6 m4

FIGURE 3.13 Problem 3.3.
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format short e
%
%%%%%%%%%%%%%% Beginning of data input %%%%%%%%%%%%%%%%
%
nnd = 4; % Number of nodes:
nel = 3; % Number of elements:
nne = 2 ; % Number of nodes per element:
nodof =2 ; % Number of degrees of freedom per node
eldof = nne*nodof; % Number of degrees of freedom

% per element
%
% Nodes coordinates X and Y
geom=zeros(nnd,1);
geom = [0.; ... % X coord. node 1

4.; ... % X coord. node 2
8.; ... % X coord. node 3
14.] ; % X coord. node 4

%
% Element connectivity
%
connec=zeros(nel,2);
connec = [1 2 ; ... % 1st and 2nd node of element 1

2 3 ; ... % 1st and 2nd node of element 2
3 4] ; % 1st and 2nd node of element 3

%
% Geometrical properties
%
% prop(1,1) = E; prop(1,2)= I
%
prop=zeros(nel,2);
prop = [200e+6 600.e-6; ... % E and I of element 1

200e+6 600.e-6; ... % E and I of element 2
200e+6 600.e-6 ]; % E and I of element 3

%
% Boundary conditions
%
nf = ones(nnd, nodof); % Initialize the matrix nf to 1
nf(1,1) = 0; nf(1,2)=0 ; % Prescribed nodal freedom of node 1
nf(4,1) = 0; nf(4,2)=0 ; % Prescribed nodal freedom of node 4
%
% Counting of the free degrees of freedom
%
n=0;
for i=1:nnd

for j=1:nodof
if nf(i,j) ~= 0
n=n+1;
nf(i,j)=n;
end

end
end
%
%
% Internal Hinges
%
Hinge = ones(nel, 2);
Hinge(2,2) = 0;
%
% loading
%
Joint_loads= zeros(nnd, 2);
Joint_loads(2,:)=[-12 0]
%
Element_loads= zeros(nel, 4);
%
%%%%%%%%%%%%%%%%%%%%%%% End of input %%%%%%%%%%%%%%%%%%%%%%
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Results file

******* PRINTING MODEL DATA **************

------------------------------------------------------
Number of nodes: 4
Number of elements: 3
Number of nodes per element: 2
Number of degrees of freedom per node: 2
Number of degrees of freedom per element: 4

------------------------------------------------------
Node X
1, 0000.00
2, 0004.00
3, 0008.00
4, 0014.00

------------------------------------------------------
Element Node_1 Node_2

1, 1, 2
2, 2, 3
3, 3, 4

------------------------------------------------------
Element E I

1, 2e+008, 0.0006
2, 2e+008, 0.0006
3, 2e+008, 0.0006

------------------------------------------------------
-------------Nodal freedom----------------------------
Node disp_w Rotation
1, 0, 0
2, 1, 2
3, 3, 4
4, 0, 0

------------------------------------------------------
-----------------Applied Nodal Loads-------------------
Node load_Y Moment
1, 0000.00, 0000.00
2, -012.00, 0000.00
3, 0000.00, 0000.00
4, 0000.00, 0000.00

------------------------------------------------------

Total number of active degrees of freedom, n = 4

--------------------------------------------------------

******* PRINTING ANALYSIS RESULTS **************

------------------------------------------------------
Global force vector F

-12
0
0
0

------------------------------------------------------
Displacement solution vector: delta
-0.00096
-0.00027
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-0.00158
0.00040

------------------------------------------------------
Nodal displacements
Node disp_y rotation
1, 0.00000, 0.00000
2, -0.00096, -0.00027
3, -0.00158, 0.00040
4, 0.00000, 0.00000

------------------------------------------------------
Members actions
element fy1 M1 Fy2 M2
1, 9.36, 26.90, -9.36, 10.55
2, -2.64, -10.55, 2.64, 0.00
3, -2.64, -0.00, 2.64, -15.82

3.7 ANALYSIS OF A SIMPLE BEAM WITH ABAQUS

3.7.1 INTERACTIVE EDITION

In this section, we will analyze the continuous beam shown in Figure 3.14 with the Abaqus interactive
edition. The cross section of the beam is shown in Figure 3.15. The material is steel with an elastic
modulus of 200 GPa.

4 m 5 m

2 m

20 kN

4 kN/m
10 kN/m

7 m

FIGURE 3.14 Continuous beam.

172

13

333359 8

FIGURE 3.15 Beam cross section; dimensions are in mm.
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Start Abaqus CAE. Click on Create Model
Database. On the main menu, click on File
and Set Work Directory to choose your work-
ing directory. Click on Save As and name the
file Beam.cae. On the left-hand-side menu, click
on Part to begin creating the model. Name the
part Beam_Part, check 2D Planar, and check
Deformable in the type. Choose Wire as the base
feature. Enter an approximate size of 20 m and
click on Continue (Figure 3.16).

FIGURE 3.16 Creating the Beam_Part.

In the sketcher menu, choose
the Create-Lines Connected
icon to begin drawing the
geometry of the beam. Click
on Done in the bottom-left
corner of the viewport win-
dow (Figure 3.17).

FIGURE 3.17 Drawing using the connected line icon.

Under the model tree, click on material
to create a material, and name it Steel.
Click on Mechanical, then Elasticity,
and Elastic. Enter 200.e6 kN/m2 for the
elastic modulus, and 0.3 for Poisson’s
ratio (Figure 3.18).

FIGURE 3.18 Material definition.
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Under the model tree, click on Profiles to create
a profile, and name it Beam_Profile. Click on
Continue (Figure 3.19).

FIGURE 3.19 Creating a beam profile.

In the Edit Profile dialog box,
enter the dimensions of the
profile. Make sure you enter
them in meters to keep a con-
sistent set of units. Click on
OK (Figure 3.20).

FIGURE 3.20 Entering the dimensions of a profile.
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Under the model tree, click on
Sections to create a section
and name it Beam_section.
In the Category check Beam,
and in the Type, choose
Beam. Click on Continue
(Figure 3.21).

FIGURE 3.21 Creating a section.

In the Edit Section dialog
box, in the Profile name
choose Beam_Profile, and in
Material choose Steel. Leave
the Poisson’s ratio as zero.
Click on OK (Figure 3.22).

FIGURE 3.22 Editing a beam section.
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Expand the menu under
Beam_Part and double click
on Section Assignments.
With the mouse, select the
whole beam in the drawing
area, and click on Done
in the left bottom corner.
In the Edit Section Assign-
ments dialog box, make sure
that Beam_section appears in
the section. Click on OK
(Figure 3.23).

FIGURE 3.23 Editing section assignments.

In Abaqus, a beam element must
have an orientation in space. The
default orientation is the one shown
in Figure 3.24. The axis n1 is in
opposite direction to the global axis
Z. For beams in a plane the n1-
direction is always (0.0, 0.0, −1.0);
that is, normal to the plane in which
the motion occurs. Therefore, pla-
nar beams can bend only about the
first beam-section axis.

Y

X

Z

n2 n1

t

FIGURE 3.24 Beam orientation.

Change the Module to Prop-
erty. Click on the Assign
Beam Orientation icon and
select the entire geometry
from the viewport. In the
prompt in the left-bottom
corner of the viewport,
accept (0.0, 0.0, −1.0) as the
direction for n1, and click
Return. Click OK to confirm
(Figure 3.25).

FIGURE 3.25 Assigning beam orientation.
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In the menu bar select View,
then Part Display Options.
In the Part Display Options,
in Idealizations, check Ren-
der beam profiles. Click
Apply (Figure 3.26).

FIGURE 3.26 Rendering beam profile.

Using the Rotate View icon
you can rotate the beam
to appear as shown in
Figure 3.27. If you are happy
with what you see, go back
and uncheck Render beam
profiles

FIGURE 3.27 Rendered beam.
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In the model tree, double
click on Mesh under the
Beam_Part, and in the main
menu, under Mesh, click
on Element Type. With the
mouse highlight all members
in the viewport and select
Done. In the dialog box, select
Standard for element type,
Linear for geometric order,
and beam for family. The
name of the element B21 and
its description are given below
the element controls. Click on
OK (Figure 3.28).

FIGURE 3.28 Selecting a beam element.

In the main menu, under Seed,
click on Edge by size. With
the mouse highlight all the
beam in the viewport. In the
prompt area of the viewport,
enter 1.0; that is, each ele-
ment will have a length of 1 m.
Click on Return, then click
Done (Figure 3.29).

FIGURE 3.29 Seeding a mesh by size.
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In the main menu, under
Mesh, click on Part. In the
prompt area of the viewport,
click on Yes. In the menu bar
select View, then Part Dis-
play Options. In the Part Dis-
play Options, under Mesh,
check Show node labels and
Show element labels. Click
Apply. The element and node
labels will appear in the
viewport (Figure 3.30).

FIGURE 3.30 Node and element labels.

In the model tree under
Beam_Part, double click on
Sets. In the dialog box, name
the set Fixed_Support, check
Node in type, and click on
Continue. With the mouse
highlight node 1, which is the
fixed support, and click on
Done in the prompt area of the
viewport (Figure 3.31).

FIGURE 3.31 Creating a node set.
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FIGURE 3.32 Selecting multiple nodes.

FIGURE 3.33 Creating element sets.

Again double click on Sets. In the dialog box, name the set Roller_Supports, check Node in
type, and click on Continue. While keeping the SHIFT key down, with the mouse highlight nodes
2, 3, and 4. When selected, they change color, as shown in Figure 3.32. Click on Done in the prompt
area of the viewport. Again double click on Sets. Name the set Loaded_Node, check Node in type,
and click on Continue. With the mouse highlight node 6. Click on Done in the prompt area of the
viewport.

Next create two element sets: one for the elements subject to the 4 kN/m load and the other for
the elements subject to 10 kN/m. Double click on Sets. In the dialog box, name the set UDL4,
check Element in type, and click on Continue. While keeping the SHIFT key down, with the mouse
highlight elements 5, 6, 7, 8, and 9. When selected, they change color as shown in Figure 3.33. Click
on Done in the prompt area of the viewport. Create another element set named UDL10 and select
elements 10 to 16.

In the model tree, expand the Assembly and double click on Instances. Select Dependent for
the instance type and click OK.

In the model tree, expand
Steps and Initial, and
double click on BC.
Name the boundary con-
dition fixed, select Dis-
placement/Rotation for
the type, and click
on Continue. In the
right-bottom corner of
the viewport, you can
see Sets (Figure 3.34)
Double click on it.

FIGURE 3.34 Imposing BC using created sets.

© 2013 by Taylor & Francis Group, LLC



Beam Element 99

In the dialog box that
appears, select Beam_Part-1.
Fixed_Support and check
Highlight selections in
viewport. Click on Continue
(Figure 3.35).

FIGURE 3.35 Selecting a node set for boundary conditions.

Fill up the Edit Boundary
Conditions in the dialog box
as shown by restricting all the
degrees of freedom. Click on
OK (Figure 3.36).

FIGURE 3.36 Editing boundary conditions.
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Click on BC again.
Name the boundary
condition Rollers,
select Displacement/
Rotation for the type,
and click on Continue.
Double click on Sets.
Select Beam_Part-
1.Roller_Supports. Fill
up the Edit Boundary
Conditions by restrict-
ing only U2. Click on
OK (Figure 3.37).

FIGURE 3.37 Imposing BC using created sets.

In the model tree, double
click on Steps. Name the
step Apply_Loads. Set the
procedure to General and
select Static, General. Click
on Continue. Give the step a
description and click OK. In
the model tree, under steps,
and under Apply_Loads,
click on Loads. Name the
load Concentrated load and
select Concentrated force as
the type. Click on Continue.
In the Region Selection dia-
log box, select Beam_Part-
1.Loaded_node. Click on
Continue. In the Edit Load
dialog box, enter −20 for
CF2. Click OK (Figure 3.38).

FIGURE 3.38 Imposing a concentrated load using a node set.
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Click on Loads again. Name
the load UDL-4 and select
Line load as the type. Click
on Continue. In the Region
Selection dialog box, select
Beam_Part-1.UDL4. Click
on Continue. In the Edit
Load dialog box, enter −4
for Component 2. Click
OK. Repeat the procedure
again to create the 10 kN/m
distributed load over element
set Beam_Part-1.UDL10
(Figure 3.39).

FIGURE 3.39 Imposing a line load on an element set.

In the model tree, expand
the Field Output Requests
and then double click on F-
Output-1. F-Output-1 is the
default and is automatically
generated when creating the
step. Uncheck the variables
Contact and select any other
variable you wish to add to
the field output. Click on OK
(Figure 3.40). FIGURE 3.40 Field output.

Under Analysis, right click on Jobs and then click on Create. In the Create Job dialog box, name
the job BEAM_Problem and click on Continue. In the Edit Job dialog box, enter a description for
the job. Check Full analysis, select to run the job in Background, and check to start it immediately.
Click OK. Expand the tree under Jobs, right click on BEAM_Problem. Then, click on Submit.
If you get the following message BEAM_Problem completed successfully in the bottom window,
then your job is free of errors and was executed properly (Figure 3.41).

FIGURE 3.41 Submitting a job in Abaqus CAE.

© 2013 by Taylor & Francis Group, LLC



102 Introduction to Finite Element Analysis Using MATLAB� and Abaqus

FIGURE 3.42 Plotting stresses in the bottom fiber.

Under the top menu, in the Module scroll to Visualization, and click to load Abaqus Viewer.
On the main menu, under File, click Open, navigate to your working directory, and open the file
Beam_Problem.odb. It should have the same name as the job you submitted. Click on the Common
options icon to display the Common Plot options dialog box. Under labels, check Show Element
labels and Show Node labels to display elements and nodes’ numbering. Click on the icon Plot
Deformed Shape to display the deformed shape of the beam. On the main menu, click on Results,
then on Field Output to open the Field Output dialog box. Choose S Stress components at
integration points. For component, choose S11 to plot the stresses in the bars (Figure 3.42). Click
on Section points to open the section point dialog box. Check bottom to plot the stresses in the lower
fiber or Top for the stresses in the top fiber. In the menu bar, click on Report and Field Output. In
the Report Field Output dialog box, for Position select Unique nodal, check RF2 and RM3 for
RF: Reaction force, and check U2 and UR3 for U: Spatial displacement. Then click on Set up.
Click on Select to navigate to your working directory. Name the file Beam_Problem.rpt. Uncheck
Append to file and click OK. Use your favorite text editor and open the file Beam_Problem.rpt,
which should be the same as the one listed next.

********************************************************************************
Field Output Report, written Mon Apr 11 11:55:08 2011

Source 1
---------

ODB: C:/Abaqus_Working Directory/Beam_Problem.odb
Step: Apply_Loads
Frame: Increment 1: Step Time = 1.000

Loc 1 : Nodal values from source 1

Output sorted by column "Node Label".

Field Output reported at nodes for part: BEAM_PART-1

Node RF.RF2 RM3 U.U2 UR3
Label @Loc 1 @Loc 1 @Loc 1 @Loc 1

---------------------------------------------------------------------------------
1 13.7126 14.6329 -13.7126E-36 -14.6329E-36
2 8.35087 0. -8.35087E-36 352.684E-06
3 58.5745 0. -56.5745E-36 -1.48255E-03
4 29.3621 0. -24.3621E-36 2.99728E-03
5 0. 0. -232.859E-06 -245.559E-06
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6 0. 0. -494.778E-06 -58.1202E-06
7 0. 0. -350.09E-06 246.55E-06
8 0. 0. 356.109E-06 360.552E-06
9 0. 0. 721.62E-06 307.269E-06

10 0. 0. 972.231E-06 66.529E-06
11 0. 0. 857.33E-06 -487.975E-06
12 0. 0. -2.1104E-03 -2.16607E-03
13 0. 0. -4.34032E-03 -1.88215E-03
14 0. 0. -5.88021E-03 -946.55E-06
15 0. 0. -6.23626E-03 324.961E-06
16 0. 0. -5.23046E-03 1.61662E-03
17 0. 0. -3.00053E-03 2.61264E-03

Minimum 0. 0. -6.23626E-03 -2.16607E-03
At Node 17 17 15 12

Maximum 58.5745 14.6329 972.231E-06 2.99728E-03
At Node 3 1 10 4

Total 110.000 14.6329 -24.9686E-03 1.61611E-03

3.7.2 ANALYSIS OF A BEAM WITH ABAQUS KEYWORD EDITION

In this section, we will prepare an input file for the beam shown in Figures 3.14 and 3.15. We will
use the same number of elements and nodes as earlier.

The file is named Beam_Problem_Keyword.inp and is listed next:

*Heading
Beam_Problem Model keyword edition

**
*Preprint, echo=No, model=NO, history=NO

**
**
** Define the end nodes

**
*Node

1, -9., 0.
17, 6., 0.

**
** Generate the remaining nodes

**
*Ngen
1,17,1

**
** Define element 1

**
*Element, type=B21
1,1,2

**
** Generate the elements

**
*Elgen, elset = all_elements
1,16, 1, 1

**
**
**
*Nset, nset=Fixed_support
1,

*Nset, nset=Roller_supports
5, 10, 17

*Nset, nset=Loaded_node
3

*Elset, elset=UDL4, generate
5, 9, 1
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*Elset, elset=UDL10, generate
10, 16, 1

**
**
** Section: Beam_section Profile: Beam_Profile

*Beam Section, elset=all_elements, material=Steel, section=I
0.1795, 0.359, 0.172, 0.172, 0.013, 0.013, 0.008
0.,0.,-1.

**
**
** MATERIALS

**
*Material, name=Steel

*Elastic
2e+08, 0.3

**
** BOUNDARY CONDITIONS

**
**
*Boundary
Fixed_support, encastre
Roller_supports, 2, 2

** ----------------------------------------------------------------

**
** STEP: Apply_Loads

**
*Step, name=Apply_Loads

*Static
1., 1., 1e-05, 1.

**
** LOADS

**
*Cload
Loaded_node, 2, -20.

**
*Dload
UDL4, PY, -4. UDL10, PY, -10.

**
** OUTPUT REQUESTS

**
**
*Output, field

*Node Output
CF, RF, RM, U

*Element Output
S

**
*Output, history, variable=PRESELECT

*End Step

• The file starts with the keyword *HEADING, which in this case is entered as
Beam_Problem Model keyword edition.

• Using the keyword *node, we define the two extreme nodes 1 and 17 and give their
coordinates x and y.

• Using the keyword *ngen, which stands for node generate, we generate all the remaining
nodes from 1 to 17 in an increment of 1.

• Using the keyword *Element, type=B21 representing a beam element in the plane. In the
data line, we enter 1 as the element number with nodes 1 and 2 all separated by “,”.

• Next, we generate the elements using the keyword *elgen. We group the elements in a set
named all_elements. In the data line, we enter the master element that has been previously
defined; that is element 1, then the number of elements to be generated, 16, followed by
the increment in node numbers of corresponding nodes from element to element, which in
this case is 1, then the increment in element numbers, which is again 1.
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• Once all the elements and nodes are defined, using the keyword *nset we create the
following node sets: Fixed_support, which contains node 1, Roller_supports, which
contains nodes 5, 10, and 17, and Loaded_node, which contains node 3.

• Next, with the keyword *elset, and the parameter generate, we create element sets UDL4
and UDL10 containing respectively elements 5 to 9 and 10 to 16. When the parameter
generate is included, each data line should give a first element, a last element, and the
increment in element numbers between these elements. If it is not included, then all the
elements forming the set must be listed in the data lines.

• With the keyword *Beam Section we define a section for the elements contained in the set
all_elements, the material is Steel, and the section is the form of I. In the first data line
we enter the dimensions of the section, and in the second its orientation with respect to the
global coordinates.

• Using the keyword *Material, we create a material named Steel. The material is elastic
and its properties are given in the data line of the keyword *elastic.

• Using the created node sets, we impose the boundary conditions with the keyword *Bound-
ary. We fully fix the node set Fixed_support by using encastre. All the nodes in the node
set Roller_supports are fixed in the direction 2.

• Next using the keyword *step, we create a step named Apply_Loads. The keyword *static
indicates that it will be a general static analysis.

• Using the keyword *cload, we apply a concentrated load of −20 kN in the direction 2 to
the node in node set Loaded_node.

• Using the keyword *dload for distributed load, we apply line loads of −4 and −10 kN/m
to the elements contained respectively in element sets UDL4 and UDL10.

• Using the keywords *Output, field, and *Node Output, we request the nodal variables
CF: concentrated force, RF: reaction force, RM: reaction moment, and displacements U
to be written to the database file *.odb. With *Element Output, we also add the stresses
S to the database file.

• *Output, history, variable = PRESELECT requests the default variables for history
output.

• Finally, we end the step and the file with *End Step.

At the command line type Abaqus job=Beam_Problem_Keyword inter followed by Return.
If you get an error, open the file with extension *.dat to see what type of error. To load the
visualization model, type Abaqus Viewer at the command line.
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4 Rigid Jointed Frames

4.1 INTRODUCTION

Rigid jointed frames are often used in buildings. They resist the combined effects of horizontal and
vertical loads. They derive their strength from the moment interactions between the beams and the
columns at the rigid joints. As a result, the elements are subjected not only to bending but also
to axial force. Such elements are referred to as beam–column elements. Their nodal displacements
include both translations and rotation (u, v, θ), as shown in Figure 4.1. In total, there are six degrees
of freedom

{de} = {u1, v1, θ1, u2, v2, θ2}T (4.1)

corresponding to six nodal loads

{Fe} = {Fx1, Fy1, M1, Fx2, Fy2, M2}T (4.2)

4.2 STIFFNESS MATRIX OF A BEAM–COLUMN ELEMENT

If we assume that the deformations are infinitesimally small, and the material is linear elastic, then
the axial displacements of the beam–column element do not interact with the bending deformations.
Consequently, the principle of superposition applies, and the displacements, forces, and stiffness
matrix of the beam–column element can be obtained by simply adding the respective matrices of a
truss element, Equation (2.10), and that of a beam element, Equation (3.30)

[Ke] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AE/L 0 0 −AE/L 0 0

0 12EI/L3 6EI/L2 0 −12EI/L3 6EI/L2

0 6EI/L2 4EI/L 0 −6EI/L2 2EI/L

−AE/L 0 0 AE/L 0 0

0 −12EI/L3 −6EI/L2 0 12EI/L3 −6EI/L2

0 6EI/L2 2EI/L 0 −6EI/L2 4EI/L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.3)

4.3 STIFFNESS MATRIX OF A BEAM–COLUMN ELEMENT IN THE PRESENCE
OF HINGED END

Sometimes a designer may specify an internal hinge in a frame, which results in a zero value for
the bending moment. To account for the presence of a hinge, the stiffness matrix can be obtained
by superimposing the respective matrices of a truss element, Equation (2.10), and that of a beam
element with a hinge at its right end, Equation (3.52), or a hinge at its left end, Equation (3.53).

107
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FIGURE 4.1 Beam column element with six degrees of freedom.

It follows that the stiffness matrix of a beam–column element with a hinge at its right end is
given as

[Ke] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AE/L 0 0 −AE/L 0 0

0 3EI/L3 3EI/L2 0 −3EI/L3 0

0 3EI/L2 3EI/L 0 −3EI/L2 0

−AE/L 0 0 AE/L 0 0

0 −3EI/L3 −3EI/L2 0 3EI/L3 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.4)

and with a hinge at its left end as

[Ke] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

AE/L 0 0 −AE/L 0 0

0 3EI/L3 0 0 −3EI/L3 3EI/L2

0 0 0 0 0 0

−AE/L 0 0 AE/L 0 0

0 −3EI/L3 0 0 3EI/L3 −3EI/L2

0 3EI/L2 0 0 −3EI/L2 3EI/L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.5)

As with a beam system, a hinge should be associated only with one element.

4.4 GLOBAL AND LOCAL COORDINATE SYSTEMS

Like for a truss member, beam–column (or frame) elements do not all have the same orientation
in space. Similarly, when it comes to assembling the global stiffness, we need to have the element
degrees of freedom (nodal displacements) given in terms of the common reference axes of the
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frame. The transformation is similar to that of a bar element except that the transformation matrix
is given as ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos θ −sin θ 0 0 0 0

sin θ cos θ 0 0 0 0

0 0 1 0 0 0

0 0 0 cos θ −sin θ 0

0 0 0 sin θ cos θ 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.6)

The transformation is carried out as follows:

[Ke] = [C][Ke][C]T (4.7)

where [Ke] represents the element stiffness matrix in the global coordinate system.

4.5 GLOBAL STIFFNESS MATRIX ASSEMBLY AND SOLUTION
FOR UNKNOWN DISPLACEMENTS

The assembly of the global stiffness matrix is similar to that of a truss detailed in Section 2.3.4,
except that a beam column element has six degrees of freedom.

The introduction of the boundary conditions also follows the same principle. The only difference
is that a node possesses three degrees of freedom: two translations and a rotation. Any of these degrees
of freedom can be free or restrained. When all the degrees of freedom at a node are restrained, the
node is sometimes referred to as encastré.

Distributed loads along a beam–column element are also treated in the same fashion as for a beam
element, Section 3.3.

4.6 COMPUTER CODE: frame.m

Writing a MATLAB� code for the analysis of a frame is merely a combination of the codes previously
written for a truss and a beam structure. The only differences reside in the matrices dimensions.
Similar to a truss structure, the elements, stiffness matrices need to be transformed from local to
global coordinates. Likewise to a beam structure, each beam–column element will have two types
of loading: one that consists of the external forces directly applied to the nodes and another that
only consists of the statically equivalent nodal loads. Therefore, in the development of the program
frame.m, we will borrow the same style as that used in the programs truss.m and beam.m.

Let us consider the portal frame shown in Figure 4.2.

4.6.1 DATA PREPARATION

To read the data, we will use the M-file frame_problem1_data.m. Again, we will use a consistent
set of units: mm for length and N for force.

The input data for this beam consist of

• nnd = 5; number of nodes
• nel = 4; number of elements
• nne = 2; number of nodes per element
• nodof = 3; number of degrees of freedom per node

Note that a beam–column element has three degrees of freedom per node:
nodof = 3.
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FIGURE 4.2 Example 1: Portal frame.

4.6.1.1 Nodes Coordinates

The coordinates x and y of the nodes are given in the form of a matrix geom(nnd, 2):

geom =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 5000

6000 6000

12000 5000

12000 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

4.6.1.2 Element Connectivity

The element connectivity is given in the matrix connec(nel, 2):

connec =

⎡
⎢⎢⎢⎢⎣

1 2

2 3

3 4

4 5

⎤
⎥⎥⎥⎥⎦

4.6.1.3 Material and Geometrical Properties

The material and geometrical properties are given in the matrix prop(nel, 3). The first column
represents the Young’s modulus, the second represents the cross-sectional area, and the third the
second moment of inertia of the cross section:

prop =
⎡
⎢⎣

200000 5310 86.4e + 6

200000 5210 86.4e + 6

200000 5210 86.4e + 6

⎤
⎥⎦

4.6.1.4 Boundary Conditions

In the same fashion as for the truss and the beam, a restrained degree of freedom is assigned the
digit 0, while a free degree of freedom is assigned the digit 1. As previously explained, a node in
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a beam–column element has three degrees of freedom: a horizontal translation along the axis X, a
vertical translation along the axis Y , and a rotation around the axis Z perpendicular to the plan XY .
As shown in Figure 4.2, nodes 1 and 5 are fully fixed (encastré). Their degrees of freedom are all
assigned the digit 0. Nodes 2, 3, and 4 are free. Their degrees of freedom u, v, and θ are assigned
the digit 1. The information on the boundary conditions is given in the matrix nf(nnd, nodof):

nf =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0

1 1 1

1 1 1

1 1 1

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

The free degrees of freedom (different from zero) are then counted, and their rank assigned back
into the matrix nf(nnd, nodof):

nf =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0

1 2 3

4 5 6

7 8 9

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

In this case, the total number of active degrees of freedom is obtained as n = 9.

4.6.1.5 Internal Hinges

To account for internal hinges, we create a vector Hinge(nel, 2) that we initialize to 1. If a particular
element k has a hinge at its left end, then we assign it the digit 0 at the position of its first node;
that is,

Hinge(k, 1) = 0

On the other hand, the hinge may be accounted for with the element j having it at its right. In that
case, we assign it the digit 0 at the position of its second node; that is,

Hinge(j, 2) = 0

A hinge must be considered for one element only.

4.6.1.6 Loading

A beam–column element can have two types of loading: loads applied directly at the nodes and
statically equivalent nodal loads. A good computer code should cater for both loadings. To dis-
tinguish between the two loading systems, we will use two matrices: Joint_loads(nnd, 3) and
Element_loads(nel, 4).

There are no loads applied directly at the nodes. Therefore, the matrix Joint_loads(nnd, 3) is
empty:

Joint_loads =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
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Elements 2 and 3 have loads applied along their length which need to be transformed to statically
equivalent nodal loads, as shown in Figure 3.4.

Element Fy1 M1 Fy2 M2

2 36.4965e3 37e6 36.4965e3 −37e6
3 −36.4965e3 −37e6 −36.4965e3 37e6

These data are stored in the M-file: beam_1_data.m in the matrix Element_loads.
The two systems of loads are added to form the global force vector F(n). This is carried out in

the M-file form_beam_F.m as follows:

• Joint loads: The assembly of the joint loads is carried out using the script Assem_Joint_
Loads.m. We create a loop over the nodes. If a degree of freedom nf(i, j) is not restrained,
then it is susceptible of carrying a load. That load is Joint_loads(i, j), and it is assembled
into the global force vector at the position F(nf(i, j)).

• Element loads: The assembly of the statically equivalent nodal loads is carried out at the
same time as the assembly of the global stiffness matrix in the same loop over all the
elements.

The data preparation is now complete, and the model data are written to the file frame_problem1_
results.txt using the M-file print_frame_model.m At this stage, it is possible to initialize the global
matrix KK(n, n) = 0.

4.6.2 ELEMENT MATRICES

4.6.2.1 Stiffness Matrix in Local Coordinates

For each element, from 1 to nel, we set up the local stiffness and transformation matrices. Once the
stiffness matrix kl is set up in local coordinates, it is transformed into global coordinates kg through
the transformation matrix C and then assembled to the global stiffness matrix KK.

For any element i, we retrieve its first and second node from the connectivity matrix:

node_1 = connec(i, 1)

node_2 = connec(i, 2)

Then using the values of the nodes, we retrieve their x and y coordinates from the geometry matrix:

x1 = geom(node_1, 1); y1 = geom(node_1, 2)

x2 = geom(node_2, 1); y2 = geom(node_2, 2)

Next, using Pythagoras theorem, we evaluate the length of the element:

L = √
(x2 − x1)2 + (y2 − y1)2

Finally, we retrieve the material and geometrical properties of the section

E = prop(i, 1); A = prop(i, 2); I = prop(i, 3)

before evaluating the matrix kl using Equation (4.3).
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The MATLAB script for evaluating the matrix kl is given in the M-file beam_column_k.m.

4.6.2.2 Transformation Matrix

Once the nodal coordinates are retrieved, it is also possible to evaluate the angle θ that the element
makes with the global X axis:

θ = tan−1

(
y2 − y1
x2 − x1

)

However, care should be taken when the element is at right angle with the global axis X as
x2 − x1 = 0. The matrix C is evaluated using Equation (4.6). The MATLAB script is given in
the M-file beam_column_C.m.

4.6.2.3 Stiffness Matrix in Global Coordinates

The element stiffness matrix kg is obtained as

kg = C × kl × CT

4.6.2.4 “Steering” Vector

Once the matrix kg is formed, we retrieve the “steering vector” g containing the number of the
degrees of freedom of the nodes of the element:

g =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nf(node_1, 1)

nf(node_1, 2)

nf(node_1, 3)

nf(node_2, 1)

nf(node_2, 2)

nf(node_2, 3)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The MATLAB script for constructing the steering vector g is given in the M-file beam_column_g.m.

4.6.2.5 Element Loads

For each element i, we also retrieve its statically equivalent nodal loads using the statement
fl = Element_loads(i, :). Since elements, loads are generally given in the element local coordinates
system, we transform fl from local to global coordinates. To assemble the transformed vector of
statically equivalent nodal loads into the global force vector F, we make use of the “steering vector” g
containing the number of the degrees of freedom of the nodes of the element. The steering vector is
built in the same way as in the program truss.m. The script is given in the M-file beam_column_g.m.
Then, we create a loop over the degrees of freedom of the element. If a degree of freedom nf(i, j)
is not restrained, then it is susceptible of carrying a load. That load is Element_loads(i, j), and it
is assembled in the global force vector at the position F(g(j)). The script is given in the M-file
Assem_Elem_loads.m.

4.6.3 ASSEMBLY OF THE GLOBAL STIFFNESS MATRIX

The global stiffness matrix [KK] is assembled using a double loop over the components of the
vector g. The script is given in the M-file form_KK.m.
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4.6.4 SOLUTION OF THE GLOBAL SYSTEM OF EQUATIONS

The solution of the global system of equations is obtained with one statement:

delta = KK\F

The backslash symbol \ is used to “divide” a matrix by a vector.

4.6.5 NODAL DISPLACEMENTS

Once the global displacements vector delta is obtained, it is possible to retrieve any nodal displace-
ments. A loop is carried over all the nodes. If a degree of freedom j of a node i is free, that is,
nf(i, j) �= 0, then it could have a displacement different from zero. The value of the displacement is
extracted from the global displacements vector delta:

node_disp(i, j) = delta(nf(i, j))

4.6.6 ELEMENT FORCES

To obtain the member forces, a loop is carried over all the elements:

1. Form element stiffness matrix [kl] in local xy
2. Form element transformation matrix [C]
3. Transform the element matrix from local to global coordinates

[kg] = [C] ∗ [kl] ∗ [C]T

4. Form element “steering” vector {g}
a. Loop over the degrees of freedom of the element to obtain element displacements

vector edg in global coordinates
b. If g(j)= 0, then the degree of freedom is restrained; edg(j) = 0
c. Otherwise edg(j) = delta(g(j))

5. Obtain element force vector in global XY coordinates
{fg} = [kg] ∗ {edg}

6. Transform element force vector to local coordinates {fl}= [C]T ∗ {fg}
7. Retrieve the element statically equivalents loads f0 = Element_loads(i, :) if any
8. Obtain the elements internal forces as force(i, :) = fl − f0

The results of the analysis are written to the file frame_problem1_results.txt using the M-file
print_frame_results.m. A copy of the file frame_problem1_results.txt is included within.

File:frame.m
% PROGRAM frame.m
%
% LINEAR STATIC ANALYSIS OF A RIGID JOINTED FRAME
%
% Make these variables global so they can be shared by other functions
%
clc
clear all
%
global nnd nel nne nodof eldof n geom connec F
global prop nf Element_loads Joint_loads force Hinge
%
format short e
%
disp(’Executing frame.m’);
%
% Open file for output of results
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%
% ALTER NEXT LINES TO CHOOSE OUTPUT FILES
%
fid =fopen(’frame_problem1_results.txt’,’w’);
disp(’Results printed to file : frame_problem1_results.txt ’);
%
%%%%%%%%%%%% Beginning of data input %%%%%%%%%%%%%%%%%%%%%
%
frame_problem1_data % Load the input file
%
F = zeros(n,1); % Initialize global force vector to zero
%
F = Assem_Joint_Loads(F); % Assemble joint loads to global force vector
%
print_frame_model % Print model data
%
KK = zeros(n, n); % Initialize the global stiffness matrix to zero
%
for i=1:nel

kl=beam_column_k(i) ; % Form element matrix in local xy
C = beam_column_C(i); % Form transformation matrix
kg=C*kl*C’ ; % Transform the element matrix from local

% to global coordinates
fl= Element_loads(i,:); % Retrieve element equivalent nodal forces

% in local xy
fg=C*fl’ ; % Transform the element force vector from

% local to global coordinates
g=beam_column_g(i) ; % Retrieve the element degrees of freedom
KK =form_kk(KK , kg, g); % assemble global stiffness matrix
F = Assem_Elem_loads(F , fg, g); % assemble global force vector

end
%
%%%%%%%%%%%%%%%% End of assembly %%%%%%%%%%%%
%
%
delta = KK\F; % solve for unknown displacements
%
% %
% Extract nodal displacements
%
for i=1:nnd

for j=1:nodof
node_disp(i,j) = 0;
if nf(i,j)~= 0;
node_disp(i,j) = delta(nf(i,j)) ;
end

end
end
%
%
for i=1:nel

kl=beam_column_k(i); % Form element matrix in local xy
C = beam_column_C(i); % Form transformation matrix
kg=C*kl*C’ ; % Transform the element matrix from local

% to global coordinates
g=beam_column_g(i) ; % Retrieve the element degrees of freedom
for j=1:eldof

if g(j)== 0
edg(j)=0.; % displacement = 0. for restrained freedom

else
edg(j) = delta(g(j));

end
end

fg = kg*edg’; % Element force vector in global XY
fl = C’*fg ; % Element force vector in local xy
f0 = Element_loads(i,:) % Equivalent nodal loads
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force_l(i,:) = fl-f0’;
force_g(i,:) = C*(fl-f0’);

end
%
print_frame_results;
%
fclose(fid);

File:frame_problem1_data.m
% File: frame_problem1_data.m
%
% The following variables are declared as global in order
% to be used by all the functions (M-files) constituting
% the program
%
%
global nnd nel nne nodof eldof n geom connec F ...

prop nf Element_loads Joint_loads force Hinge
%
format short e
%
nnd = 5 ; % Number of nodes:
nel = 4 ; % Number of elements:
nne = 2 ; % Number of nodes per element:
nodof =3; % Number of degrees of freedom per node
eldof = nne*nodof; % Number of degrees of freedom per element
%
% Nodes coordinates x and y
%
geom=zeros(nnd,2);
geom(1,1)=0. ; geom(1,2)= 0.; % x and y coordinates of node 1
geom(2,1)=0. ; geom(2,2)= 5000.; % x and y coordinates of node 2
geom(3,1)=6000. ; geom(3,2)= 6000.; % x and y coordinates of node 3
geom(4,1)=12000. ; geom(4,2)= 5000.; % x and y coordinates of node 4
geom(5,1)=12000. ; geom(5,2)= 0.; % x and y coordinates of node 4
%
% Element connectivity
%
connec=zeros(nel,2);
connec(1,1) = 1; connec(1,2) =2 ; % First and second node of element 1
connec(2,1) = 2; connec(2,2) =3 ; % First and second node of element 2
connec(3,1) = 3; connec(3,2) =4 ; % First and second node of element 3
connec(4,1) = 4; connec(4,2) =5 ; % First and second node of element 4
%
% Geometrical properties
%
prop=zeros(nel,3);
prop(1,1)=2.0e+5; prop(1,2)=5210; prop(1,3)=86.4e+6; % E,A and I element 1
prop(2,1)=2.0e+5; prop(2,2)=5210; prop(2,3)=86.4e+6; % E,A and I element 2
prop(3,1)=2.0e+5; prop(3,2)=5210; prop(3,3)=86.4e+6; % E,A and I element 3
prop(4,1)=2.0e+5; prop(4,2)=5210; prop(4,3)=86.4e+6; % E,A and I element 4
%
% Boundary conditions
%
nf = ones(nnd, nodof); % Initialize the matrix nf to 1
nf(1,1) = 0; nf(1,2) =0; nf(1,3) = 0; % Prescribed nodal freedom of node 1
nf(5,1) = 0; nf(5,2)= 0; nf(5,3) = 0; % Prescribed nodal freedom of node 5
%
% Counting of the free degrees of freedom
%
n=0;
for i=1:nnd

for j=1:nodof
if nf(i,j) ~= 0

n=n+1;
nf(i,j)=n;
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end
end

end
%
% Internal Hinges
%
Hinge = ones(nel,2);
%
% loading
%
Joint_loads= zeros(nnd, 3);
%
% Joint loads are usually entered in global coordinates
% Enter here the forces in X and Y directions and any
% concentrated moment at node i
%
% Staticaly equivalent loads are entered in local
% coordinates of the element
%
Element_loads= zeros(nel, 6);
Element_loads(2,:)= [0 36.4965e3 37e6 0 36.4965e3 -37e6];
Element_loads(3,:)= [0 -36.4965e3 -37e6 0 -36.4965e3 37e6];
%
%
%%%%%%%%%%%% End of input %%%%%%%%%%%%

File:frame_problem1_results.txt
******* PRINTING MODEL DATA **************

------------------------------------------------------
Number of nodes: 5
Number of elements: 4
Number of nodes per element: 2
Number of degrees of freedom per node: 3
Number of degrees of freedom per element: 6

------------------------------------------------------
Node X Y
1, 0000.00 0000.00
2, 0000.00 5000.00
3, 6000.00 6000.00
4, 12000.00 5000.00
5, 12000.00 0000.00

------------------------------------------------------
Element Node_1 Node_2

1, 1, 2
2, 2, 3
3, 3, 4
4, 4, 5

------------------------------------------------------
Element E A I

1, 200000, 5210 8.64e+007
2, 200000, 5210 8.64e+007
3, 200000, 5210 8.64e+007
4, 200000, 5210 8.64e+007

------------------------------------------------------
-------------Nodal freedom----------------------------
Node disp_u disp_u Rotation
1, 0, 0, 0
2, 1, 2, 3
3, 4, 5, 6
4, 7, 8, 9
5, 0, 0, 0

© 2013 by Taylor & Francis Group, LLC



118 Introduction to Finite Element Analysis Using MATLAB� and Abaqus

------------------------------------------------------
-----------------Applied joint Loads-------------------
Node load_X load_Y Moment
1, 0000.00, 0000.00, 0000.00
2, -5999.99, 35999.93, 37000000.00
3, -11999.98, 0000.00, -74000000.00
4, -5999.99, -35999.93, 37000000.00
5, 0000.00, 0000.00, 0000.00

------------------------------------------------------

Total number of active degrees of freedom, n = 9

--------------------------------------------------------

******* PRINTING ANALYSIS RESULTS ************

------------------------------------------------------
Global force vector F

-5999.99
35999.9
3.7e+007
-12000
0
-7.4e+007
-5999.99
-35999.9
3.7e+007

------------------------------------------------------
Displacement solution vector: delta
-25.03159
0.16363
0.00712
-25.04119
0.00000
-0.00686
-25.03159
-0.16363
0.00712

------------------------------------------------------
Nodal displacements
Node disp_x disp_y rotation
1, 0.00000e+000, 0.00000e+000, 0.00000e+000
2, -2.50316e+001, 1.63630e-001, 7.11912e-003
3, -2.50412e+001, 7.98515e-015, -6.85508e-003
4, -2.50316e+001, -1.63630e-001, 7.11912e-003
5, 0.00000e+000, 0.00000e+000, 0.00000e+000

------------------------------------------------------
Members actions in local coordinates
element fx1 fy1 M1 fx2 Fy2 M2
1, -34100.5529, -11999.9753, -54603626.4780, 34100.5529, 11999.9753, -5396249.9239
2, 6230.6063, -35609.3620, 5396249.9239, -6230.6063, -37383.6380, -0.0000
3, -6230.6063, 37383.6380, 0.0000, 6230.6063, 35609.3620, 5396249.9239
4, 34100.5529, -11999.9753, -5396249.9239, -34100.5529, 11999.9753, -54603626.4780
------------------------------------------------------
Members actions in global coordinates
element fx1 fy1 M1 fx2 Fy2 M2
1, 11999.9753, -34100.5529, -54603626.4780, -11999.9753, 34100.5529, -5396249.9239
2, 11999.9753, -34100.5529, 5396249.9239, 0.0000, -37899.2988, -0.0000
3, 0.0000, 37899.2988, 0.0000, 11999.9753, 34100.5529, 5396249.9239
4, -11999.9753, -34100.5529, -5396249.9239, 11999.9753, 34100.5529, -54603626.4780
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E = 70.e + 6 N/m2, A = 0.1 m2, I = 1.333e – 3 m4

E = 70.e + 6 N/m2, A = 0.1 m2, I = 1.333e – 3 m4
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FIGURE 4.3 Frame with an internal hinge.

Figure 4.3 shows a two-level frame with an internal hinge in the top beam. The frame is made
from two different materials. The columns have an elastic modulus of 35.e6 kN/m2, a cross area of
0.16 m2, and second moment of inertia of 2.1333e − 3 m4. The beams have an elastic modulus of
70e6 kN/m2, a cross area of 0.1 m2, and second moment of inertia of 1.333e − 3 m4. In addition,
two concentrated loads are applied along the lower beam. Instead of considering the lower beam as
one element with the concentrated loads transformed into statically equivalent loads, we will simply
discretize the beam into three elements such that the two concentrated loads are applied at joints.
The finite element discretization is shown in Figure 4.4.
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FIGURE 4.4 Finite element discretization.
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Element 4 Element 6
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FIGURE 4.5 Statically equivalent nodal loads.

Elements 4 and 6 are both subject to a uniformly distributed load that needs to be transformed to
statically equivalent nodal loads. However, the elements are joined by a hinge at node 5. In such a
case, the statically equivalent nodal loads are the reactions of a propped cantilever (Figure 4.5).

Input File
% File: frame_problem2_data.m
%
% The following variables are declared as global in order
% to be used by all the functions (M-files) constituting
% the program
%
%
global nnd nel nne nodof eldof n geom connec F ...

prop nf Element_loads Joint_loads force Hinge
%
format short e
%
nnd = 9 ; % Number of nodes:
nel = 9 ; % Number of elements:
nne = 2 ; % Number of nodes per element:
nodof =3; % Number of degrees of freedom per node
eldof = nne*nodof; % Number of degrees of freedom per element
%
% Nodes coordinates x and y
%
geom=zeros(nnd,2);
geom(1,1)=0. ; geom(1,2)= 0.; % x and y coordinates of node 1
geom(2,1)=0. ; geom(2,2)= 5.; % x and y coordinates of node 2
geom(3,1)=0. ; geom(3,2)= 10.; % x and y coordinates of node 3
geom(4,1)=3. ; geom(4,2)= 5.; % x and y coordinates of node 4
geom(5,1)=4.5 ; geom(5,2)= 10.; % x and y coordinates of node 5
geom(6,1)=6. ; geom(6,2)= 5.; % x and y coordinates of node 6
geom(7,1)=9. ; geom(7,2)= 10.; % x and y coordinates of node 7
geom(8,1)=9. ; geom(8,2)= 5.; % x and y coordinates of node 8
geom(9,1)=9. ; geom(9,2)= 0.; % x and y coordinates of node 9
%
% Element connectivity
%
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connec=zeros(nel,2);
connec(1,1) = 1; connec(1,2) =2 ; % First and second node of element 1
connec(2,1) = 2; connec(2,2) =3 ; % First and second node of element 2
connec(3,1) = 2; connec(3,2) =4 ; % First and second node of element 3
connec(4,1) = 3; connec(4,2) =5 ; % First and second node of element 4
connec(5,1) = 4; connec(5,2) =6 ; % First and second node of element 5
connec(6,1) = 5; connec(6,2) =7 ; % First and second node of element 6
connec(7,1) = 6; connec(7,2) =8 ; % First and second node of element 7
connec(8,1) = 7; connec(8,2) =8 ; % First and second node of element 8
connec(9,1) = 8; connec(9,2) =9 ; % First and second node of element 9
%
% Geometrical properties
%
prop=zeros(nel,3);
prop(1,1)=35e+6; prop(1,2)=0.16; prop(1,3)=2.1333e-3; %E,A and I of element 1
prop(2,1)=35e+6; prop(2,2)=0.16; prop(2,3)=2.1333e-3; %E,A and I of element 2
prop(3,1)=70e+6; prop(3,2)=0.1 ; prop(3,3)=1.3333e-3; %E,A and I of element 3
prop(4,1)=70e+6; prop(4,2)=0.1 ; prop(4,3)=1.3333e-3; %E,A and I of element 4
prop(5,1)=70e+6; prop(5,2)=0.1 ; prop(5,3)=1.3333e-3; %E,A and I of element 5
prop(6,1)=70e+6; prop(6,2)=0.1 ; prop(6,3)=1.3333e-3; %E,A and I of element 6
prop(7,1)=70e+6; prop(7,2)=0.1 ; prop(7,3)=1.3333e-3; %E,A and I of element 7
prop(8,1)=35e+6; prop(8,2)=0.16; prop(8,3)=2.1333e-3; %E,A and I of element 8
prop(9,1)=35e+6; prop(9,2)=0.16; prop(9,3)=2.1333e-3; %E,A and I of element 9
%
% Boundary conditions
%
nf = ones(nnd, nodof); % Initialize the matrix nf to 1
nf(1,1) = 0; nf(1,2) =0; nf(1,3) = 0; % Prescribed nodal freedom of node 1
nf(9,1) = 0; nf(9,2)= 0; nf(9,3) = 0; % Prescribed nodal freedom of node 9
%
% Counting of the free degrees of freedom
%
n=0;
for i=1:nnd

for j=1:nodof
if nf(i,j) ~= 0

n=n+1;
nf(i,j)=n;

end
end

end
%
% Internal Hinges
%
Hinge = ones(nel, 2);
Hinge(4,2) = 0; %Hinge accounted with element 4
%
% loading
%
% Joint loads are usually entered in global coordinates
% Enter here the forces in X and Y directions and any
% concentrated moment at node i
Joint_loads= zeros(nnd, 3);
Joint_loads(4,:)=[0 -20 0];
Joint_loads(6,:)=[0 -20 0];
%
% Staticaly equivalent loads are entered in local
% coordinates of the element
%
Element_loads= zeros(nel, 6);
Element_loads(4,:)= [0 -56.25 -50.625 0 -33.75 0];
Element_loads(6,:)= [0 -33.75 0 0 -56.25 50.625];
%
%
%%%%%%%%%%%% End of input %%%%%%%%%%%%
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Results File
******* PRINTING MODEL DATA **************

------------------------------------------------------
Number of nodes: 9
Number of elements: 9
Number of nodes per element: 2
Number of degrees of freedom per node: 3
Number of degrees of freedom per element: 6

------------------------------------------------------
Node X Y
1, 0000.00 0000.00
2, 0000.00 0005.00
3, 0000.00 0010.00
4, 0003.00 0005.00
5, 0004.50 0010.00
6, 0006.00 0005.00
7, 0009.00 0010.00
8, 0009.00 0005.00
9, 0009.00 0000.00

------------------------------------------------------
Element Node_1 Node_2

1, 1, 2
2, 2, 3
3, 2, 4
4, 3, 5
5, 4, 6
6, 5, 7
7, 6, 8
8, 7, 8
9, 8, 9

------------------------------------------------------
Element E A I

1, 3.5e+007, 0.16 0.0021333
2, 3.5e+007, 0.16 0.0021333
3, 7e+007, 0.1 0.0013333
4, 7e+007, 0.1 0.0013333
5, 7e+007, 0.1 0.0013333
6, 7e+007, 0.1 0.0013333
7, 7e+007, 0.1 0.0013333
8, 3.5e+007, 0.16 0.0021333
9, 3.5e+007, 0.16 0.0021333

------------------------------------------------------
-------------Nodal freedom----------------------------
Node disp_u disp_u Rotation
1, 0, 0, 0
2, 1, 2, 3
3, 4, 5, 6
4, 7, 8, 9
5, 10, 11, 12
6, 13, 14, 15
7, 16, 17, 18
8, 19, 20, 21
9, 0, 0, 0

------------------------------------------------------
-----------------Applied joint Loads-------------------
Node load_X load_Y Moment
1, 0000.00, 0000.00, 0000.00
2, 0000.00, 0000.00, 0000.00
3, 0000.00, -056.25, -050.63
4, 0000.00, -020.00, 0000.00
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5, 0000.00, -067.50, 0000.00
6, 0000.00, -020.00, 0000.00
7, 0000.00, -056.25, 0050.63
8, 0000.00, 0000.00, 0000.00
9, 0000.00, 0000.00, 0000.00

------------------------------------------------------

Total number of active degrees of freedom, n = 21

--------------------------------------------------------

******* PRINTING ANALYSIS RESULTS ************

------------------------------------------------------
Global force vector F

0
0
0
0
-56.25
-50.625
0
-20
0
0
-67.5
0
0
-20
0
0
-56.25
50.625
0
0
0

------------------------------------------------------
Displacement solution vector: delta
-0.00004
-0.00010
0.00049
0.00004
-0.00018
-0.00366
-0.00001
-0.00008
-0.00016
0.00000
-0.02762
0.00732
0.00001
-0.00008
0.00016
-0.00004
-0.00018
0.00366
0.00004
-0.00010
-0.00049

------------------------------------------------------
Nodal displacements
Node disp_x disp_y rotation
1, 0.00000e+000, 0.00000e+000, 0.00000e+000
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2, -4.15908e-005, -9.82143e-005, 4.89326e-004
3, 3.61455e-005, -1.78571e-004, -3.65810e-003
4, -1.38636e-005, -8.38724e-005, -1.58328e-004
5, 8.98622e-018, -2.76241e-002, 7.31947e-003
6, 1.38636e-005, -8.38724e-005, 1.58328e-004
7, -3.61455e-005, -1.78571e-004, 3.65810e-003
8, 4.15908e-005, -9.82143e-005, -4.89326e-004
9, 0.00000e+000, 0.00000e+000, 0.00000e+000

------------------------------------------------------
Members actions in local coordinates
element fx1 fy1 M1 fx2 Fy2 M2
1, 110.0000, 8.4705, 13.8690, -110.0000, -8.4705, 28.4833
2, 90.0000, -56.2264, -78.6320, -90.0000, 56.2264, -202.5000
3, -64.6969, 20.0000, 50.1487, 64.6969, -20.0000, 9.8513
4, 56.2264, 90.0000, 202.5000, -56.2264, -0.0000, 0.0000
5, -64.6969, -0.0000, -9.8513, 64.6969, 0.0000, 9.8513
6, 56.2264, 0.0000, -0.0000, -56.2264, 90.0000, -202.5000
7, -64.6969, -20.0000, -9.8513, 64.6969, 20.0000, -50.1487
8, 90.0000, 56.2264, 202.5000, -90.0000, -56.2264, 78.6320
9, 110.0000, -8.4705, -28.4833, -110.0000, 8.4705, -13.8690
------------------------------------------------------
Members actions in global coordinates
element fx1 fy1 M1 fx2 Fy2 M2
1, -8.4705, 110.0000, 13.8690, 8.4705, -110.0000, 28.4833
2, 56.2264, 90.0000, -78.6320, -56.2264, -90.0000, -202.5000
3, -64.6969, 20.0000, 50.1487, 64.6969, -20.0000, 9.8513
4, 56.2264, 90.0000, 202.5000, -56.2264, -0.0000, 0.0000
5, -64.6969, -0.0000, -9.8513, 64.6969, 0.0000, 9.8513
6, 56.2264, 0.0000, -0.0000, -56.2264, 90.0000, -202.5000
7, -64.6969, -20.0000, -9.8513, 64.6969, 20.0000, -50.1487
8, 56.2264, -90.0000, 202.5000, -56.2264, 90.0000, 78.6320
9, -8.4705, -110.0000, -28.4833, 8.4705, 110.0000, -13.8690

4.7 ANALYSIS OF A SIMPLE FRAME WITH ABAQUS

4.7.1 INTERACTIVE EDITION

In this section, we will analyze the portal frame shown in Figure 4.6 with the Abaqus interactive
edition. The cross sections of the profiles used are shown in Figure 4.7. The material is steel with an
elastic modulus of 200 GPa.
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FIGURE 4.6 Portal frame.
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FIGURE 4.7 Profiles’ sections; dimensions are in mm.

Start Abaqus CAE. Click
on Create Model Database.
On the main menu, click
on File and Set Work
Directory to choose your
working directory. Click on
Save As and name the file
Portal_frame.cae. On the
left-hand-side menu, click
on Part to begin creating
the model. Name the part
Portal_Frame, check 2D
Planar, check Deformable in
the type. Choose Wire as
the base feature. Enter an
approximate size of 20 m
and click on Continue. In
the sketcher menu, choose
the Create-Lines Connected
icon to begin drawing the
geometry of the frame. Click
on Done in the bottom-left
corner of the viewport win-
dow (Figure 4.8).

FIGURE 4.8 Creating the Portal_frame part.
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Under the model tree, click
on material to create a
material, and name it Steel.
Click on Mechanical, then
Elasticity, and Elastic.
Enter 200.e6 kN/m2 for the
elastic modulus, and 0.3
for Poisson’s ratio. Next,
click on Profiles to cre-
ate a profile, and name it
Column_Profile. Click on
Continue. Enter the dimen-
sions of the profile section.
Repeat the procedure to
create another profile for the
rafters, which will be named
Rafter_Profile (Figure 4.9).

FIGURE 4.9 Material and profiles definitions.

Under the model tree, click on
Sections to create a section
and name it Column_section.
In the Category check Beam,
and in the Type choose
Beam. Click on Continue. In
the Edit Section dialog box,
in the Profile name select
Column_Profile, and in
Material choose Steel.
Leave the Poisson’s ratio as
zero. Click on OK. Repeat
the procedure to create a
section for the rafters named
Column_section using
the profile Rafter_Profile
(Figure 4.10).

FIGURE 4.10 Creating sections.
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Expand the menu under Parts
and Portal_Frame, and dou-
ble click on Section Assign-
ments. By keeping the Shift
key down, click on the
columns in the viewport area.
Click on Done in the left-
bottom corner. In the Edit
Section Assignments dialog
box, select Column_section,
and click on OK. Repeat
the procedure by selecting
this time the rafters, and
in the Edit Section Assign-
ments dialog box, select
Rafter_section. Click on OK
to finish (Figure 4.11).

FIGURE 4.11 Editing section assignments.

To check the beam orien-
tations, change the Module
to Property. Click on the
Assign Beam Orientation
icon and select the entire
geometry from the viewport.
In the prompt in the left-
bottom corner of the view-
port, accept (0.0, 0.0, −1.0) as
the direction for n1 and click
Return. Click OK to confirm
(Figure 4.12).

FIGURE 4.12 Assigning beam orientation.

In the menu bar select View,
then Part Display Options.
In the Part Display Options,
in Idealizations, check Ren-
der beam profiles. Click
Apply (Figure 4.13).

FIGURE 4.13 Rendering beam profile.
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In the model tree, double
click on Mesh under the
Portal_Frame, and in the
main menu, under Mesh, click
on Element Type. With the
mouse highlight all members
in the viewport and select
Done. In the dialog box,
select Standard for element
type, Linear for geometric
order, and beam for family.
Click on OK. In the main
menu, under Seed, click on
Edges. With the mouse high-
light all the frame in the view-
port. In the dialog box, select
edge by number and enter 4.
Click on Apply and on OK.
Under mesh, click on Part,
and Yes in the prompt area
(Figure 4.14).

FIGURE 4.14 Seeding by number.

In the menu bar select View,
then Part Display Options.
In the Part Display Options,
under Mesh, check Show
node labels and Show ele-
ment labels. Click Apply.
The element and node labels
will appear in the viewport
(Figure 4.15).

FIGURE 4.15 Mesh.
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In the model tree under
Portal_Frame, double
click on Sets. In the dia-
log box, name the set
Pinned_Supports, check
Node in type, and click on
Continue. With the mouse
highlight the nodes forming
the supports. Click on Done
in the prompt area of the
viewport. Make sure you
select Element for Type,
repeat the procedure to
create the following ele-
ment sets: Left_column,
Right_column, Columns,
Left_Rafter, Right_Rafter,
and Rafters (Figure 4.16).

FIGURE 4.16 Creating the element set Rafters.

In the model tree, expand
the Assembly and double
click on Instances. Select
Portal_frame for Parts, and
click OK. In the model tree,
expand Steps and Initial,
and double click on BC.
Name the boundary condition
Pinned, select Symmetry/
Antisymmetry/Encastre for
the type, and click on
Continue. In the right-
bottom corner of the
viewport, click on Sets
and select Portal_Frame-
1.Pinned_supports. In the
Edit Boundary Condition
select PINNED. Click OK
(Figure 4.17).

FIGURE 4.17 Imposing BC using created sets.
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In the model tree, double click on
Steps. Name the step Apply_Loads. Set
the procedure to General, and select
Static, General. Click on Continue.
Give the step a description, and click
OK. In the model tree, under steps, and
under Apply_Loads, click on Loads.
Name the load W15 and select Line
load as the type. Click on Continue.
In the Region Selection dialog box,
select Portal_Frame-1.Left_Column.
Click on Continue. In the Edit Load
dialog box, select Global for System,
and enter 15 for Component 1. Click
OK. Repeat exactly the same proce-
dure for the right column, name the load
W10, and enter 10 for the magnitude
(Figure 4.18).

FIGURE 4.18 Imposing a line load in global coordi-
nates.

In the model tree, under steps, and under
Apply_Loads, click on Loads. Name
the load DOWN12 and select Line load
as the type. Click on Continue. In
the Region Selection dialog box, select
Portal_Frame-1.Left_Rafter. Click on
Continue. In the Edit Load dialog box,
select Local for System, and enter −12
for Component 2. Click OK. Repeat
exactly the same procedure for the right
rafter, name the load UP12, and enter 12
for the magnitude (Figure 4.19).

FIGURE 4.19 Imposing a line load in local coordi-
nates.

In the model tree, expand the Field Output Requests and then double click on F-Output-1.
F-Output-1 is the default and is automatically generated when creating the step. Uncheck the
variables Contact and select any other variable you wish to add to the field output. Click on OK.
Under Analysis, right click on Jobs and then click on Create.

In the Create Job dialog box, name the job Portal_frame and click on Continue. In the Edit
Job dialog box, enter a description for the job. Check Full analysis, select to run the job in
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FIGURE 4.20 Analyzing a job in Abaqus CAE.

Background, and check to start it immediately. Click OK. Expand the tree under Jobs, right
click on Portal_frame. Then, click on Submit. If you get the following message Portal_frame
completed successfully in the bottom window, then your job is free of errors and was exe-
cuted properly. Notice that Abaqus has generated an input file for the job Portal_frame.inp
(Figure 4.20). Open it with your preferred text editor and compare it with the one given in
Section 4.7.2.

Under the top menu, in the Module scroll to Visualization, and click to load Abaqus Viewer.
On the main menu, under File, click Open, navigate to your working directory, and open the
file Portal_frame.odb. It should have the same name as the job you submitted. Click on the
Common options icon to display the Common Plot options dialog box. Under labels, check
Show Element labels and Show Node labels to display elements and nodes’ numbering. Click on
the icon Plot Deformed Shape to display the deformed shape of the beam. On the main menu,
click on Results then on Field Output to open the Field Output dialog box. Choose S Stress
components at integration points. For component, choose S11 to plot the stresses in the elements.
Click on Section points to open the section point dialog box. Check bottom to plot the stresses
in the lower fiber or Top for the stresses in the top fiber (Figure 4.21). In the menu bar, click on
Report and Field Output. In the Report Field Output dialog box, for Position select Unique
nodal, check RF1, RF2, and RM3 for RF: Reaction force, and check U1, U2, and UR3 for
U: Spatial displacement. Then, click on Set up. Click on Select to navigate to your working
directory. Name the file Portal_Frame.rpt. Uncheck Append to file, and click OK. Use your
favorite text editor and open the file Portal_Frame.rpt, which should be the same as the one
listed next.

FIGURE 4.21 Plotting stresses in the bottom fiber (interactive edition).
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********************************************************************************
Field Output Report, written Sun May 01 14:53:07 2011

Source 1
---------

ODB: F:/TRAVAIL/NEW_BOOK/Abaqus_examples/Portal_frame.odb
Step: Apply_loads
Frame: Increment 1: Step Time = 1.000

Loc 1 : Nodal values from source 1

Output sorted by column ’’Node Label’’.

Field Output reported at nodes for part: PORTAL_FRAME-1

Node RF.RF1 RF.RF2 RM3 U.U1 U.U2 UR3
Label @Loc 1 @Loc 1 @Loc 1 @Loc 1 @Loc 1 @Loc 1

------------------------------------------------------------------------------------
1 -100.845 -7.5 0. 89.5948E-36 7.50000E-36 -74.8338E-03
2 0. 0. 0. 352.883E-03 25.9456E-06 -30.1636E-03
3 0. 0. 0. 352.071E-03 4.10271E-03 17.5904E-03
4 0. 0. 0. 351.052E-03 -25.9456E-06 -31.6545E-03
5 -85.1552 7.5 0. 77.6552E-36 -7.50000E-36 -72.8888E-03
6 0. 0. 0. 111.346E-03 6.48639E-06 -71.2556E-03
7 0. 0. 0. 212.186E-03 12.9728E-06 -61.4198E-03
8 0. 0. 0. 294.479E-03 19.4592E-06 -47.1234E-03
9 0. 0. 0. 360.710E-03 -36.4285E-03 -12.0266E-03
10 0. 0. 0. 362.105E-03 -42.8683E-03 3.42622E-03
11 0. 0. 0. 358.483E-03 -25.8914E-03 14.0226E-03
12 0. 0. 0. 358.292E-03 33.2892E-03 13.1950E-03
13 0. 0. 0. 361.470E-03 48.2755E-03 2.07421E-03
14 0. 0. 0. 359.490E-03 39.1929E-03 -13.5997E-03
15 0. 0. 0. 290.684E-03 -19.4592E-06 -47.9722E-03
16 0. 0. 0. 207.946E-03 -12.9728E-06 -61.0826E-03
17 0. 0. 0. 108.549E-03 -6.48639E-06 -69.7875E-03

4.7.2 KEYWORD EDITION

In this section, we will prepare an input file for the portal frame shown in Figures 4.6 and 4.7. The
file named Frame_Problem_Keyword.inp is listed next:

*Heading
Frame_Problem Model keyword edition

**
*Preprint, echo=No, model=NO, history=NO

**
**
** Define the end nodes

**
*Node

1, 0., 0.
5, 0., 6.
9, 7., 7.5
13, 14., 6.

17, 14., 0.

**
** Generate the remaining nodes

**
*Ngen
1,5,1
5,9,1
9,13,1
13,17,1

**
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** Define element 1

**
*Element, type=B21
1,1,2

**
** Generate the elements

**
*Elgen, elset = all_elements
1,16, 1, 1

**
**
*Nset, nset=Pinned_supports
1, 17

*Elset, elset=Left_Column, generate
1, 4, 1

*Elset, elset=Right_Column, generate
13, 16, 1

*Elset, elset=Columns
Left_Column, Right_Column

**
*Elset, elset=Left_Rafter, generate
5, 8, 1

*Elset, elset=Right_Rafter, generate
9, 12, 1

*Elset, elset=Rafters
Left_Rafter,Right_Rafter,

**
**
** Section: Beam_section Profile: Rafter_Profile

*Beam Section, elset=Rafters, material=Steel, section=I
0.1795, 0.359, 0.172, 0.172, 0.013, 0.013, 0.008
0.,0.,-1.

**
**
** Section: Beam_section Profile: Column_Profile

*Beam Section, elset=Columns, material=Steel, section=I
0.163, 0.326, 0.172, 0.172, 0.013, 0.013, 0.014
0.,0.,-1.

**
** MATERIALS

**
*Material, name=Steel

*Elastic
2e+08, 0.3

**
** BOUNDARY CONDITIONS

**
**
*Boundary
Pinned_supports,PINNED

** ----------------------------------------------------------------

**
** STEP: Apply_Loads

**
*Step, name=Apply_Loads

*Static
1., 1., 1e-05, 1.

**
** LOADS

**
**
*Dload
Right_column, PX, 10.
Left_column, PX, 15.
Left_rafter, P2, -12.
Right_rafter, P2, 12.

**
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** OUTPUT REQUESTS

**
**
*Output, field

*Node Output
CF, RF, RM, U

*Element Output
S

**
*Output, history, variable=PRESELECT

*End Step

At the command line, type Abaqus job=Frame_Problem_Keyword inter followed by Return.
If you get an error, open the file with extension *.dat to see what type of error. To load the
visualization model, type Abaqus Viewer at the command line.

On the main menu, under File, click Open, navigate to your working directory, and open the file
Frame_Problem_Keyword.odb. It should have the same name as the job you submitted. Click on
the Common options icon to display the Common Plot options dialog box. Under labels, check
Show Element labels and Show Node labels to display elements and nodes’ numbering. Click on
the icon Plot Deformed Shape to display the deformed shape of the beam. On the main menu,
click on Results, then on Field Output to open the Field Output dialog box. Choose S Stress
components at integration points. For component, choose S11 to plot the stresses in the elements
(Figure 4.22). Click on Section points to open the section point dialog box. Check bottom to plot
the stresses in the lower fiber or Top for the stresses in the top fiber. Notice that the stress contour
is exactly the same as obtained previously, except that the node and element numbering is different.

FIGURE 4.22 Plotting stresses in the bottom fiber (keyword edition).
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5 Stress and Strain Analysis

5.1 INTRODUCTION

This chapter deals with the notions of stress–strain and strain–displacements relation, which are
quite essential for understanding the remaining developments in the book. It marks the change
of philosophy between matrix structural analysis and finite element analysis of a continuum. In
the previous Chapters 2 through 4, we only considered structural elements whose behavior can be
formulated as a function of a single variable x, which is the longitudinal direction of the element.
This is of course possible because of the geometry, where two dimensions are insignificant compared
to the third one. The only stress of interest therefore is the longitudinal stress σx along the dominant
dimension. Yet, in a three-dimensional solid where all the dimensions are of the same size, this
assumption is not valid anymore. When a three-dimensional solid is subjected to external forces
and/or displacements, and at the same time is restrained against rigid body movement, internal
forces are induced, and these result in more than one stress at a point. Additionally, these external
forces result in material points within the body being displaced. When there is a change in distance
between two points, straining has taken place. Again there is more than one strain at a point. As will
be shown in the Sections 5.3.3 and 5.3.4, a segment of infinitesimal length not only experiences a
change in length, but also a change in direction.

As stresses and strains are interrelated, we will also consider the relations between them. Such
relations are called constitutive equations, since they describe the macroscopic behavior resulting
from the internal constitution of the material. Materials, however, exhibit different behaviors over
their entire range of deformations. As such, it is not possible to write one set of mathematical
equations to describe these behaviors. Yet, for many engineering applications, the theory of linear
elasticity offers a useful and reliable model for analysis.

5.2 STRESS TENSOR

5.2.1 DEFINITION

Let us consider a body in equilibrium under external forces as represented in Figure 5.1. Let us take
a cut through the body, as represented by the plane �, and denote by dA an infinitesimal element of
the internal cross section. A force d�F is exerted on this small area. It represents the influence of the
right section on the left section of the body.

The vector d�F can be expressed in terms of its normal and tangential components, d �Fn and d �Ft,
to the surface dA. The stresses acting on the surface are then given as

σn = lim
dA→0

d �Fn

dA
(5.1)

σt = lim
dA→0

d �Ft

dA
(5.2)

It can be seen that d �Ft has also two components on the plane of the surface dA. In total, therefore,
there are three stress components: one normal and two tangential. However, as the infinitesimal
element dA shrinks to a point, there will be an infinite number of planes passing through that
point. It would be impossible therefore to consider all of them. However, if we choose three
mutually perpendicular planes, as represented in Figure 5.2, the stresses can be written for all of
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FIGURE 5.1 Internal force components.
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FIGURE 5.2 Stress components at a point.

them. It should be emphasized however that the parallelepiped represented in Figure 5.2 is not
a block of material cut from the body, but a simple yet convenient schematic device to repre-
sent the stresses acting at a point. It can be seen that there are nine components of stress acting
at a point.

The nine stresses are arranged in a stress tensor as

σ =
⎡
⎢⎣

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

⎤
⎥⎦ (5.3)

It should be noted that a stress component has two indices: the first index indicates the direction of
the normal to the plane on which it acts and the second refers to the direction of the stress component.
A stress component is positive if it acts on a positive face in the positive direction or on a negative
face in the negative direction.
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The stress tensor is symmetric, since by taking moments about the axis passing through the point
(or the center of the “cube” as shown), it can be shown that

σ12 = σ21 σ13 = σ31 σ23 = σ32 (5.4)

In general,

σij = σji (5.5)

This shows that the stress tensor contains only six independent components.

5.2.2 STRESS TENSOR–STRESS VECTOR RELATIONSHIPS

In order to study the transformation of stress, let us isolate an infinitesimal tetrahedron, as shown
in Figure 5.3. The plane ABC is perpendicular to an arbitrary-oriented normal �n written in vector
matrix notation as

{n} = {n1, n2, n3}T (5.6)

The components {ni} are the direction cosines of the normal �n. If �S is the area of the surface ABC,
then the areas of the other surfaces can be expressed as

for COB �S1 = n1�S

for AOC �S2 = n2�S (5.7)

for BOA �S3 = n3�S

These expressions denote that the faces are the projections of the oblique face onto the coordinates
planes. Figure 5.3 also shows the stress vectors �T∗

1 , �T∗
2 , �T∗

3 , which are the components of the �T∗ on

σ11

σ12

σ13

σ31

σ33

σ32

σ23

σ21
σ22

n

T

T1

T2

T3

B

2

3

C

A

1

FIGURE 5.3 Stress components on a tetrahedron.

© 2013 by Taylor & Francis Group, LLC



138 Introduction to Finite Element Analysis Using MATLAB� and Abaqus

the three mutually orthogonal planes. These stress vectors are resolved along the coordinate axes 1,
2, and 3 as

σ∗
11, σ

∗
12, σ∗

13 for �T∗
1

σ∗
21, σ

∗
22, σ∗

23 for �T∗
2 (5.8)

σ∗
31, σ

∗
32, σ∗

33 for �T∗
3

The asterisk (*) indicates that we are dealing with average values. Remember that a stress vector is
a point quantity.

The body force vector �q∗ that acts throughout the body is also shown. Resolution of �q∗ and �T∗

into the directions of the coordinate axis yields

{q∗} = {q∗
1, q∗

2, q∗
3}T (5.9)

{T∗} = {T∗
1 , T∗

2 , T∗
3 }T (5.10)

Equilibrium requires the vector sum of all forces acting on the tetrahedron to be zero. To obtain the
forces acting on the tetrahedron, the stress components must be multiplied by the respective areas
on which they act. Requiring equilibrium in the x-direction yields

T∗
1 �S + q∗

1�V − σ∗
11n1�S − σ∗

21n2�S − σ∗
31n3�S = 0 (5.11)

The volume of the tetrahedron can be written as

�V = 1

3
h�S (5.12)

where h is the perpendicular distance from point O to the base ABC. Substituting for V and dividing
by S in the equilibrium equation yields

T∗
1 + q∗

1

1

3
h − σ∗

11n1 − σ∗
21n2 − σ∗

31n3 = 0 (5.13)

Now let the tetrahedron shrink to a point by taking the limit as h → 0, and noting in this process
that the starred (average) quantities take on the actual values of those quantities at a point, results in

T1 = σ11n1 + σ21n2 + σ31n3 (5.14)

Similarly, we obtain for the y and z directions

T2 = σ12n1 + σ22n2 + σ32n3

T3 = σ13n1 + σ23n2 + σ33n3

(5.15)

These expressions can be grouped in a matrix form as follows:
⎧⎪⎨
⎪⎩

T1

T2

T3

⎫⎪⎬
⎪⎭ =

⎡
⎢⎣

σ11 σ21 σ31

σ12 σ22 σ32

σ13 σ23 σ33

⎤
⎥⎦

⎧⎪⎨
⎪⎩

n1

n2

n3

⎫⎪⎬
⎪⎭ (5.16)

or simply as

{T} = [σ]T{n} (5.17)

or in index notation as

Ti = σjinj (5.18)
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5.2.3 TRANSFORMATION OF THE STRESS TENSOR

If the components of the stress tensor σ in the basis (�e1, �e2, �e3) are known, let us find the components
of the same tensor in another basis (�e′

1, �e′
2, �e′

3) obtained from a rotation of axes around the origin.
Since the stress tensor is a second-order tensor, it obeys the same transformation laws for second-
order tensor as detailed in Appendix C. Therefore, the components of the stress tensor in the new
basis are obtained respectively in index and matrix notations as

σ′
km = lkilmjσij (5.19)

[σ′] = [Q][σ][Q]T (5.20)

The components lij or Qij are the cosines of the angles formed by the unit vectors (�e′
i, �ej). The inverse

transformations are obtained as

σij = lkilmjσ
′
km

[σ] = [Q]T[σ′][Q] (5.21)

5.2.4 EQUILIBRIUM EQUATIONS

Equilibrium of a small cube of material that is removed from a larger body subject to external forces
requires that the resultant force and moment acting on the cube must be equal to zero.

In Figure 5.4, the components of stress acting on the positive faces of the element are shown.
The components acting on the negative faces are omitted for the sake of clarity of the figure. The
omitted components are σ11, σ12, σ13 on face 1; σ21, σ22, σ23 on face 2; and σ31, σ32, σ33 on face 3.

The stresses vary throughout the body, and it is assumed that their components and derivatives
are continuous functions of the coordinates. To express this variation, the well-known rules of
differential calculus can be used:

σ11(x + dx) = σ11(x) + ∂σ11

∂x
(5.22)

In addition to the stress components acting on the body, body forces such as the ones due to gravity
are also present and have intensities bx, by, and bz or simply bi. When the stress components are

σ33
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FIGURE 5.4 Equilibrium of an infinitesimal cube.
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multiplied by the area on which they act, force components are obtained. Requiring equilibrium in
the x direction leads to

−σ11dydz +
(

σ11 + ∂σ11

∂x
dx

)
dydz − σ21dxdz +

(
σ21 + ∂σ21

∂x
dx

)
dxdz

− σ31dxdy +
(

σ31 + ∂σ31

∂x
dx

)
dxdy + bxdxdydz = 0 (5.23)

After rearranging, Equation (5.23) becomes

∂σ11

∂x
+ ∂σ21

∂y
+ ∂σ31

∂z
+ bx = 0 (5.24)

Requiring equilibrium in y and z directions as well results in

∂σ12

∂x
+ ∂σ22

∂y
+ ∂σ32

∂z
+ by = 0

∂σ13

∂x
+ ∂σ23

∂y
+ ∂σ33

∂z
+ bz = 0

(5.25)

Noticing that x, y, and z are actually the first, second, and third directions, Equations (5.24) and
(5.25) can be simply written as

σij,i + bj = 0 (5.26)

or because of the symmetry of the stress tensor as

σij,j + bi = 0 (5.27)

The comma “,” in expressions (5.26) and (5.27) indicates derivative with respect to a direction
designated by the index following the comma “,”.

5.2.5 PRINCIPAL STRESSES

Since the stress tensor is a second-order tensor, the calculation of the principal stress values and
their associated principal directions is exactly the same as for a general second-order tensor detailed
in Appendix C.

In other words, in the basis (�e1, �e2, �e3), the stress vector �T = σ�n on the cutting plane P(n) is not
parallel to the normal �n, the problem is to find the cutting plane P(n′) whose normal �n′ is parallel to
�T such that �T = σ�n′ = λ�n′ where λ is a scalar. This plane, together with two other planes, which are
all mutually perpendicular, forms a basis called the principal basis of the tensor (Figure 5.5). This
new basis is made of the principal directions of the tensor. In this basis, the tensor reduces to its
diagonal form

σ =
⎡
⎢⎣

σ1 0 0

0 σ2 0

0 0 σ3

⎤
⎥⎦ (5.28)
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FIGURE 5.5 Principal directions of a stress tensor.

where σ1, σ2, and σ3 are the principal stresses and roots of the characteristic equation of the tensor

σ3 − I1σ2 + I2σ − I3 = 0 (5.29)

where I1, I2, and I3 are the stress invariants, which are independent of the coordinates system. They
are obtained as

I1 = σii

I2 = 1

2
(σiiσjj − σijσij) (5.30)

I3 = |σij| = det([σ])

These invariants can also be expressed in terms of σ1, σ2, and σ3, which are invariants themselves:

I1 = σ1 + σ2 + σ3

I2 = σ1σ2 + σ2σ3 + σ3σ1 (5.31)

I3 = σ1σ2σ3

5.2.6 VON MISES STRESS

What is referred to as von Mises stress is another form of invariant of the stress tensor. As the reader
will find out in subsequent chapters, Abaqus by default plots a contour of the von Mises stress.
This quantity is very useful when plastic yielding of a material is present. Indeed, it is possible for
a material to yield under a given combination of the principal stresses even though none of them
exceeds the yield stress of the material. The von Mises stress is a formula combining the principal
stresses into an equivalent stress that can be compared to the yield stress of the material, and it is
given as

(σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ3 − σ1)
2 = 2σ2

e (5.32)

5.2.7 NORMAL AND TANGENTIAL COMPONENTS OF THE STRESS VECTOR

In a basis formed by the principal directions of the stress tensor, the stress vector may be resolved
into a normal and tangential component as shown in Figure 5.6.
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FIGURE 5.6 Tangential and normal components of the stress vector.

By definition, the stress vector is expressed respectively in vector, index, and matrix notations as

�T = σ�n
Ti = σijnj (5.33)

{T} = [σ]{n}

The normal is the scalar or dot product of �T with �n written in vector, index, and matrix notations as

σn = �T · �n
σn = ninjσij (5.34)

σn = {n}T[σ]{n}

In the principal basis, the components of the stress vector can also be expressed as

T1 = σ1n1

T2 = σ2n2 (5.35)

T3 = σ3n3

Substituting Equations (5.35) in any equation of (5.34) yields

σn = σ1n
2
1 + σ2n2

2 + σ3n2
3 (5.36)

Using Pythagoras theorem gives the tangential or shear component as

σ2
s = TiTi − σ2

n (5.37)

Notice that the term TiTi represents the modulus of the stress vector �T; it is actually the scalar product
of �T by itself. Substituting (5.35) and (5.36) in (5.37) yields

σ2
s = σ2

1n2
1 + σ2

2n
2
2 + σ2

3n
2
3 − (σ1n2

1 + σ2n
2
2 + σ3n

2
3) (5.38)
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When the principal stresses are ordered according to σ1 ≥ σ2 ≥σ3, the maximum shear stress is
given as

σs = 1

2
(σ1 − σ3) (5.39)

Combining Equations (5.38) and (5.37) with the identity n2
1 +n2

2 +n2
3 = 1 and solving for the direction

cosines ni, we obtain

n2
1 = (σn − σ2)(σn − σ3) + σ2

s

(σ1 − σ2)(σ1 − σ3)

n2
2 = (σn − σ1)(σn − σ3) + σ2

s

(σ2 − σ1)(σ2 − σ3)
(5.40)

n2
3 = (σn − σ1)(σn − σ2) + σ2

s

(σ3 − σ1)(σ3 − σ2)

These equations serve as the basis for Mohr’s circle of stress.

5.2.8 MOHR’S CIRCLES FOR STRESS

Mohr’s circles provide a convenient graphical two-dimensional representation of the three-
dimensional state of stress. Mohr’s circles are drawn in the (σn, σs) stress space. Given the ordering
σ1 ≥ σ2 ≥ σ3, it can be seen that the numerator of the right-hand-side of Equation (5.40) is positive;
that is,

(σn − σ2)(σn − σ3) + σ2
s ≥ 0 (5.41)

This equation represents stress points in the (σn, σs) stress space that are on or outside the circle C1,
shown in Figure 5.7, which has for equation:

(σn − (σ2 + σ3)/2)2 + σ2
s = ((σ2 − σ3)/2)2 (5.42)

σs

σn

σ2 – σ3

2 σ1 – σ2
2

σ1 – σ3

2

C3

C1

C2

FIGURE 5.7 Mohr’s circles.
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The same approach can be used to draw two other circles C2 and C3 represented by the following
equations:

(σn − (σ3 + σ1)/2)2 + σ2
s = ((σ3 − σ1)/2)2 (5.43)

(σn − (σ1 + σ2)/2)2 + σ2
s = ((σ1 − σ2)/2)2 (5.44)

5.2.9 ENGINEERING REPRESENTATION OF STRESS

Previously, it was shown that the stress tensor is symmetric and therefore possesses only six inde-
pendent components. For this reason, engineers more often write the stress tensor as a vector with
six components:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ1

σ2

σ3

σ4

σ5

σ6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ12

σ23

σ13

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σxx

σyy

σzz

σxy

σyz

σxz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.45)

With this notation, the transformation law for stress in the case of a rotation around the axis 3, or
axis z, by an angle ψ is written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ′
11

σ′
22

σ′
33

σ′
12

σ′
23

σ′
13

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos2 ψ sin ψ 0 2 sin ψ cos ψ 0 0

sin2 ψ cos2 ψ 0 −2 sin ψ cos ψ 0 0

0 0 1 0 0 0

− sin ψ cos ψ sin ψ cos ψ cos2 ψ − sin2 ψ 0 0 0

0 0 0 0 cos ψ − sin ψ

0 0 0 0 sin ψ cos ψ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ12

σ23

σ13

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.46)

5.3 DEFORMATION AND STRAIN

5.3.1 DEFINITION

The term deformation refers to a change in shape of the body between some initial undeformed
configuration and some final deformed configuration, as represented in Figure 5.8. After deformation,
point M moves to M∗ and point N moves to N∗. The segment MN not only undergoes a change in
length but also a change in its direction. Most often, deformation is not just a function of the spatial
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FIGURE 5.8 Schematic representation of the deformation of a solid body.

coordinates, but it is also a function of time. Some deformation processes such as creep in concrete
or relaxation in prestressing tendons occur over very long periods of time. Often the configuration
at time t = 0 is chosen as the reference configuration, and the current configuration refers to the
configuration which the body occupies at current time t.

5.3.2 LAGRANGIAN AND EULERIAN DESCRIPTIONS

During deformation, the particles of a body move along various paths. Relative to a Cartesian coordi-
nate system, a particle that originally occupied a position (X, Y , Z) in the undeformed configuration
occupies the position (x, y, z) in the deformed configuration. This motion may be expressed by the
equations

x = x(X, Y , Z, t)

y = y(X, Y , Z, t) (5.47)

z = z(X, Y , Z, t)

or more compactly in index notation as

xi = xi(X1, X2, X3, t) (5.48)

Equations (5.47) and (5.48) can be thought of as a mapping of the initial configuration into the current
configuration. This description of motion is known as the Lagrangian description. For instance, when
a body undergoes deformation, a quantity associated with a particle such as temperature changes
with time. Such changes in temperature can be expressed according to Equation (5.48) as

θ = θ(X1, X2, X3, t) (5.49)

The Lagrangian description is also known as the material description or reference description.
On the other hand, the motion may be given in the form

Xi = Xi(x1, x2, x3, t) (5.50)

Given the current position of a particle, this description can be thought of as one that provides a
tracing to the original position of the particle. This description is known as the Eulerian description.

The triples (X, Y , Z) and (x, y, z) are also known respectively as material and spatial coordinates.
The Lagrangian description seems the most suitable in solid mechanics, since in these problems

there is usually an easy way to identify a reference configuration for which all information is known.
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However, it is of little use in fluid mechanics, because in nonsteady flow the reference position at
time t = 0 of a particle is generally not known. In this book, since we are primarily dealing with
solid mechanics, we will use the Lagrangian description. The coordinates of a particle in the initial
configuration are labeled (X, Y , Z).

5.3.3 DISPLACEMENT

Relative to a Cartesian coordinate system, let ( �e1, �e2, �e3) be the unit vectors in the directions of the
superposed coordinates (X1, X2, X3) and (x1, x2, x3). The position of the particle M at time t = 0 can

be described by the vector
−→
OM, as shown in Figure 5.9:

−→
OM = X1 �e1 + X2 �e2 + X3 �e3 (5.51)

The particle originally at M moves to M∗ in the current configuration at time t. Its new position is

described by the vector
−−→
OM∗:

−−→
OM∗ = x1 �e1 + x2 �e2 + x3 �e3 (5.52)

The equation xi = xi(X1, X2, X3, t) describes the path of the particle, which at time t = 0 is located
at M. The vector

−−→
MM∗ is the displacement vector from the reference to the current configuration

obtained as

−−→
MM∗ = −−→

OM∗ − −→
OM (5.53)

which, after substitution of Equations (5.51) and (5.52), becomes

−−→
MM∗ = (x1 − X1) �e1 + (x2 − X2) �e2 + (x3 − X3) �e3 (5.54)

This equation is normally written as

−−→
MM∗ = �u = u1 �e1 + u2 �e2 + u3 �e3 (5.55)

X2, x2

X1, x1

e2

e3
e1

O

M M*

X3, x3

FIGURE 5.9 Reference and current configurations.
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The terms ui are the components of the displacement vector, and they are assumed to be continuous
functions of the coordinates Xi; ui = ui(X1, X2, X3, t).

5.3.4 DISPLACEMENT AND DEFORMATION GRADIENTS

Once more, let us consider the deformed and undeformed configuration in a Cartesian coordinate
system where the unit vectors ( �e1, �e2, �e3) are the directions of the superposed coordinates (X1, X2, X3)

and (x1, x2, x3).
Figure 5.10 represents the deformation process of an infinitesimal element originally at MN in

the undeformed configuration, which moves to the position M∗N∗ in the deformed configuration.
During deformation, point M moves to M∗, and its new position is given by

−−→
OM∗ = −→

OM + −−→
MM∗ (5.56)

The vector
−−→
MM∗ represents the displacement of point M and is noted �u(M).

Point N also moves to N∗, and its new position is given by the vector position:

−−→
ON∗ = −→

ON + −−→
NN∗ (5.57)

Again, the vector
−−→
NN∗ represents the displacement of point N noted �u(N).

The relative position between points N and M after deformation is expressed as

−−−→
M∗N∗ = −−→

ON∗ − −−→
OM∗ = −→

ON − −→
OM + �u(N) − �u(M) (5.58)

Since points M and N are very close to each other, MN is an infinitesimal element with length dS. It
follows therefore that

−→
MN = −→

ON − −→
OM = d(

−→
OM) = d�S (5.59)

O

X2, x2

X1, x1

X3, x3

e2

e3

e1

M
u(M)

u(N)
N

dS
ds

M*

N*

FIGURE 5.10 Deformations of an infinitesimal element.
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The same can be said about points M∗ and N∗:

−−−→
M∗N∗ = −−→

ON∗ − −−→
OM∗ = d(

−−→
OM∗) = d �s (5.60)

Substituting (5.59) and (5.60), expression (5.58) is rewritten as

d �s = d�S + d �u(M) (5.61)

Introducing the Cartesian components of the vectors,

d�S = dX1 �e1 + dX2 �e2 + dX3 �e3 (5.62)

d �s = dx1 �e1 + dx2 �e2 + dx3 �e3 (5.63)

d �u = du1 �e1 + du2 �e2 + du3 �e3 (5.64)

Equation (5.62) becomes

dxi = dXi + ∂ui

∂Xj

dXj = (δij + ui,j)dXj = FijdXj (5.65)

or in matrix notation as

⎧⎪⎨
⎪⎩

dx1

dx2

dx3

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

dX1

dX2

dX3

⎫⎪⎬
⎪⎭ +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂u1

∂X1

∂u1

∂X2

∂u1

∂X3

∂u2

∂X1

∂u2

∂X2

∂u2

∂X3

∂u3

∂X1

∂u3

∂X2

∂u3

∂X3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎨
⎪⎩

dX1

dX2

dX3

⎫⎪⎬
⎪⎭ (5.66)

and, in a more compact form, as

{dx} = ([I] + [∇u]{dX} = [F]{dX} (5.67)

The matrices [F] and [∇u] are respectively called the deformation gradient matrix and the
displacement gradient matrix.

5.3.5 GREEN LAGRANGE STRAIN MATRIX

The variation of the square of the distances between points M and N in the undeformed configuration
and points M∗ and N∗ in the deformed configuration is given as

‖−−−→
M∗N∗‖2 − ‖−→MN‖2 = ‖d

−−→
OM∗‖2 − ‖d

−→
OM‖2 = ‖d �s‖2 − ‖d�S‖2 (5.68)

Substituting for d �s from Equation (5.61), Equation (5.68) becomes

‖d �s‖2 − ‖d�S‖2 = d�Sd �u + d �ud�S + ‖d �u‖2 (5.69)

Introducing the Cartesian components of the vectors d�S and d �u, Equation (5.69) becomes

‖d �s‖2 − ‖d�S‖2 = ∂ui

∂Xj

dXjdXi + ∂uj

∂Xi

dXidXj + ∂uk

∂Xj

∂uk

∂Xi

dXidXj

=
(

∂ui

∂Xj

+ ∂uj

∂Xi

+ ∂uk

∂Xj

∂uk

∂Xi

)
dXidXj

= 2EijdXidXj (5.70)
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where

Eij = 1

2

(
∂ui

∂Xj

+ ∂uj

∂Xi

+ ∂uk

∂Xj

∂uk

∂Xi

)
(5.71)

Equations (5.70) and (5.71) can be written in matrix notation as

‖d �s‖2 − ‖d�S‖2 = {dX}T[∇u]{dX} + {dX}T[∇u]T{dX} + {dX}T[∇u]T[∇u]{dX}
= {dX}T([∇u] + [∇u]T + [∇u]T[∇u]){dX}
= 2{dX}T[E]{dX} (5.72)

with

[E] = 1

2
([∇u] + [∇u]T + [∇u]T[∇u]) (5.73)

The tensor Eij or [E] is called the Green Lagrange strain tensor or matrix.
Using Equation (5.67), [F] = [I] + [∇u], the Green Lagrange strain matrix can be expressed as

[E] = 1

2
([F]T[F] − [I]) (5.74)

The Green Lagrange strain is symmetric, and this can be easily verified from Equation (5.74).
The nine components of the tensor when expanded using Equations (5.71) or (5.73) become

E11 = ∂u1

∂X1

+ 1

2

((
∂u1

∂X1

)2

+
(

∂u2

∂X1

)2

+
(

∂u3

∂X1

)2
)

E22 = ∂u2

∂X2

+ 1

2

((
∂u1

∂X2

)2

+
(

∂u2

∂X2

)2

+
(

∂u3

∂X2

)2
)

(5.75)

E33 = ∂u3

∂X3

+ 1

2

((
∂u1

∂X3

)2

+
(

∂u2

∂X3

)2

+
(

∂u3

∂X3

)2
)

E12 = E21 = 1

2

[
∂u1

∂X2

+ ∂u2

∂X1

+
(

∂u1

∂X1

∂u1

∂X2

+ ∂u2

∂X1

∂u2

∂X2

+ ∂u3

∂X1

∂u3

∂X2

)]

E23 = E32 = 1

2

[
∂u2

∂X3

+ ∂u3

∂X2

+
(

∂u1

∂X2

∂u1

∂X3

+ ∂u2

∂X2

∂u2

∂X3

+ ∂u3

∂X2

∂u3

∂X3

)]

E31 = E13 = 1

2

[
∂u1

∂X3

+ ∂u3

∂X1

+
(

∂u1

∂X1

∂u1

∂X3

+ ∂u2

∂X1

∂u2

∂X3

+ ∂u3

∂X1

∂u3

∂X3

)]

5.3.6 SMALL DEFORMATION THEORY

5.3.6.1 Infinitesimal Strain

In small deformation theory, it is assumed that the first derivatives of displacements are so small that
the squares and products of these derivatives are negligible compared to the linear terms. It follows
therefore that the terms (∂uk/∂xi)(∂uk/∂xj) in Equation (5.71) and [∇u]T[∇u] in Equation (5.73) are
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negligible and equal to zero. As a result, the Green Lagrange strain tensor reduces to the infinitesimal
strain tensor, which is written in both index and matrix notations as

εij = 1

2

(
∂ui

∂Xj

+ ∂uj

∂Xi

)
(5.76)

[ε] = 1

2
([∇u] + [∇u]T) (5.77)

Within the context of small deformation theory, Equation (5.70) is rewritten as

‖d �s‖2 − ‖d�S‖2 = 2εijdXidXj (5.78)

Further, assuming that dS ≈ ds for small deformations, this equation may be put in the form

ds − dS

dS
= εij

dXi

dS

dXj

dS
(5.79)

or in matrix form as

ds − dS

dS
= 1

dS2

⎧⎪⎨
⎪⎩

dX1

dX2

dX3

⎫⎪⎬
⎪⎭

T

[ε]

⎧⎪⎨
⎪⎩

dX1

dX2

dX3

⎫⎪⎬
⎪⎭ (5.80)

The left-hand-side of Equations (5.79) or (5.80) is recognized as the change in length of the
differential element and is called the normal strain for the element originally having direction
cosines dXi/dS. Introducing the direction cosines αi = dXi/dS, Equations (5.79) and (5.80) become

ds − dS

dS
= εijαiαj (5.81)

= 1

dS2

⎧⎪⎨
⎪⎩

α1

α2

α3

⎫⎪⎬
⎪⎭

T

[ε]

⎧⎪⎨
⎪⎩

α1

α2

α3

⎫⎪⎬
⎪⎭ (5.82)

In addition, in small deformation theory, there is very little difference between the material
(X1, X2, X3) and spatial (x1, x2, x3) coordinates. Hence, it is immaterial whether the infinitesimal
strain tensor is written as

1

2

(
∂ui

∂Xj

+ ∂uj

∂Xi

)
or

1

2

(
∂ui

∂xj

+ ∂uj

∂xi

)

5.3.6.2 Geometrical Interpretation of the Terms of the Strain Tensor

In the context of small deformation theory, let us consider the deformation behavior of two orthogonal
infinitesimal elements MN and ML respectively parallel to the axis x1 and x2, as shown in Figure 5.11:

−→
MN = dS1 �e1

−→
ML = dS2 �e2

After deformation, points M, N, and L move respectively to M′, N ′, and L′:

−−→
M′N ′ = −→

MN + −→
NN ′ − −−→

MM′ (5.83)
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+
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       ∂u2
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FIGURE 5.11 Geometrical representation of the components of strain at a point.

which can be written using Cartesian components as

−−→
M′N ′ = dx1 �e1 +

(
u1 + ∂u1

∂x1

dx1

)
�e1 +

(
u2 + ∂u2

∂x1

dx1

)
�e2 − u1 �e1 − u2 �u2

=
(

dx1 + ∂u1

∂x1

dx1

)
�e1 +

(
∂u2

∂x1

dx1

)
�e2 (5.84)

The term (∂u1/dx1)dx1 = ε11dx1 represents the change of length of the infinitesimal element MN in
the direction x1. It follows therefore that ε11 represents the straining at point M in the direction x1,
and the term (∂u2/dx1)dx1 = ε21dx1 represents its distortion in the direction x2.

The same reasoning can be carried out for the infinitesimal element ML:

−−→
M′L′ = dx2 �e2 +

(
u2 + ∂u2

∂x2

dx2

)
�e2 +

(
u1 + ∂u1

∂x2

dx2

)
�e1 − u1 �e1 − u2 �u2

=
(

∂u1

∂x2

dx2

)
�e1 +

(
dx2 + ∂u2

∂x2

dx2

)
�e2 (5.85)

Again, the term (∂u2/dx2)dx2 = ε22dx2 represents the change in length of the infinitesimal element
ML in the direction x2. It follows therefore that ε22 represents the straining at point M in the direction
x2, and the term (∂u1/∂x2)dx2 = ε12dx2 represents its distortion in the direction x1.

The angle γ1 between the directions
−→
MN and

−−→
M′N ′ before and after deformation is such that

tan γ1 =
∂u2

∂x1

dx1

dx1 + ∂u1

∂x1

dx1

=
∂u2

∂x1

1 + ∂u1

∂x1

≈ ∂u2

∂x1

(5.86)

since

∂u1

∂x1

� 1
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The same can be said for the angle γ2 between the directions
−→
ML and

−−→
M′L′:

tan γ2 = ∂u1

∂x2

(5.87)

It follows therefore that the angle between
−→
MN and

−→
ML that was equal to π/2 before deformation

reduces by γ12 = γ1 + γ2 after deformation has taken place.
The angle γ12 is called the engineering shear strain at point M written as

γ12 = 2ε12 (5.88)

5.3.6.3 Compatibility Conditions

The strain tensor contains six independent components. Integration of these six components should
lead to the three displacement components (u1, u2, u3). However, the solution is not unique unless
the six components of strain verify the following compatibility equations:

∂2εii

∂x2
j

+ ∂2εjj

∂x2
i

= 2
∂2εij

∂xi∂xj

for i �= j (5.89)

∂2εii

∂xj∂xk

=
(

−∂εjk

∂xi

+ ∂εik

∂xj

+ ∂εij

∂xk

)
for i �= j �= k (5.90)

5.3.7 PRINCIPAL STRAINS

In terms of components, the strain tensors E and ε bear some resemblance to the stress tensor. There-
fore, the entire development for principal strains, principal strain directions and strain invariants,
may be carried out exactly as was done for the stress tensor.

In particular, in the basis made of the principal directions, the strain tensor reduces to its
diagonal form

ε =
⎡
⎢⎣

ε1 0 0

0 ε2 0

0 0 ε3

⎤
⎥⎦ (5.91)

where ε1, ε2, and ε3 are the principal stresses and roots of the characteristic equation of the tensor:

ε3 − I1ε2 + I2ε − I3 = 0 (5.92)

where

I1 = εii

I2 = 1

2
(εiiεjj − εijεij) (5.93)

I3 = |εij| = det([ε])
These invariants can also be expressed in terms of ε1, ε2, and ε3, which are invariants themselves, as

I1 = ε1 + ε2 + ε3

I2 = ε1ε2 + ε2ε3 + ε3ε1 (5.94)

I3 = ε1ε2ε3
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5.3.8 TRANSFORMATION OF THE STRAIN TENSOR

Like the stress tensor, the strain tensor transforms according to the transformation law of second-
order tensors. If the components of the strain tensor ε are known in the basis (�e1, �e2, �e3), then its
components in the basis (�e′

1, �e′
2, �e′

3) are obtained in both index and matrix notations as

ε′
km = lkilmjεij (5.95)

[ε′] = [Q][ε][Q]T (5.96)

The components lij or Qij are the cosines of the angles formed by the unit vectors (�e′
i, �ej). The inverse

transformations are obtained as

εij = lkilmjε
′
km

[ε] = [Q]T[ε′][Q] (5.97)

5.3.9 ENGINEERING REPRESENTATION OF STRAIN

Like the stress tensor, the strain tensor is symmetric and therefore possesses only six independent
components. Engineers also prefer to substitute for the shear strains the engineering shear strains as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε1

ε2

ε3

ε4

ε5

ε6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε11

ε22

ε33

γ12

γ23

γ13

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εxx

εyy

εzz

γxy

γyz

γxz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εxx

εyy

εzz

2εxy

2εyz

2εxz

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.98)

With this notation, the transformation law for strain in the case of a rotation around the axis 3, or
axis z, is written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε′
11

ε′
22

ε′
33

γ′
12

γ′
23

γ′
13

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos2 ψ sin ψ 0 sin ψ cos ψ 0 0

sin ψ cos2 ψ 0 − sin ψ cos ψ 0 0

0 0 1 0 0 0

−2 sin ψ cos ψ 2 sin ψ cos ψ cos2 ψ − sin2 ψ 0 0 0

0 0 0 0 cos ψ − sin ψ

0 0 0 0 sin ψ cos ψ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε11

ε22

ε33

γ12

γ23

γ13

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.99)
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5.4 STRESS–STRAIN CONSTITUTIVE RELATIONS

5.4.1 GENERALIZED HOOKE’S LAW

The stress tensor is related to the strain tensor through the generalized Hooke’s law, which is given
in index notation as

σij = Dijklεkl (5.100)

where Dijkl is the stiffness tensor. This is a fourth-order tensor with 81 components. Equation (5.100)
represents actually nine equations of which the first one is given as

σ11 = D1111ε11 + D1112ε12 + D1113ε13 + D1121ε21

+ D1122ε22 + D1123ε23 + D1131ε31 + D1132ε32 + D1133ε33 (5.101)

Luckily, in practice the equations are much simpler and not all the 81 components are indepen-
dent. The symmetry of both the stress and strain tensors introduces some simplifications into the
constitutive equations:

Dijkl = Dijlk = Djikl = Djilk (5.102)

In addition, the assumption of linear elastic material behavior implies the existence of a strain energy
density function. Omitting the proof, this energy density function is given as

dU = σijεij = σ11ε11 + σ22ε22 + σ33ε33 + σ12ε12 + σ23ε23 + σ13ε13 (5.103)

According to Equations (5.101) and (5.103), it follows that

∂U

∂ε11

= σ11 = D1111ε11 + D1112ε12 + D1113ε13 + D1121ε21 + D1122ε22 + D1123ε23

+ D1131ε31 + D1132ε32 + D1133ε33 (5.104)

and

∂U

∂ε22

= σ22 = D2211ε11 + D2212ε12 + D2213ε13 + D2221ε21 + D2222ε22 + D2223ε23

+ D2231ε31 + D2232ε32 + D2233ε33 (5.105)

Hence,

∂2U

∂ε11∂ε22

= D1122 = D2211 (5.106)

and, in general,

∂2U

∂εkl∂εmn

= Dklmn = Dmnkl (5.107)

Equation (5.107) shows that the fourth-order tensor Dijkl is symmetric. In other words, the number
of independent elastic coefficients is reduced from 36 to 21.
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The generalized Hooke’s law for an anisotropic material can now be written using engineering
matrix notation as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ12

σ23

σ13

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1111 D1122 D1133 D1112 D1123 D1113

D2211 D2222 D2233 D2212 D2223 D2213

D3311 D3322 D3333 D3312 D3323 D3313

D1211 D1222 D1233 D1212 D1223 D1213

D2311 D2322 D2333 D2312 D2323 D2313

D1311 D1322 D1333 D1312 D1323 D1313

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε11

ε22

ε33

γ12 = 2ε12

γ23 = 2ε23

γ13 = 2ε13

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.108)

with Dklmn = Dmnkl.
In practice, it is sometimes more useful to express observed strains in terms of applied stresses,

using the compliance tensor obtained by inverting (5.108)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε11

ε22

ε33

γ12

γ23

γ13

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1111 C1122 C1133 C1112 C1123 C1113

C2211 C2222 C2233 C2212 C2223 C2213

C3311 C3322 C3333 C3312 C3323 C3313

C1211 C1222 C1233 C1212 C1223 C1213

C2311 C2322 C2333 C2312 C2323 C2313

C1311 C1322 C1333 C1312 C1323 C1313

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ12

σ23

σ13

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.109)

Further simplifications in the number of constants can be achieved if certain symmetries exist in the
material. But, before investigating these material symmetries, it is important to know how a fourth-
order tensor is transformed. Since the components of stress and strain are functions of the system of
reference axes, the elastic coefficients in Equation (5.108) are also functions of this orientation.

If the components of the stiffness tensor Dijkl in the basis ( �e1, �e2, �e3) are known, its components in
the basis ( �e′

1, �e′
2, �e′

3) are obtained according to the following transformation rule:

D′
prst = lpilrjlskltlDijkl (5.110)

5.4.2 MATERIAL SYMMETRIES

5.4.2.1 Symmetry with respect to a Plane

A material that exhibits symmetry of its elastic properties to one plane is called a monoclinic material.
This symmetry is expressed by the requirement that the material constants do not change under a
change from the basis ( �e1, �e2, �e3) to ( �e′

1, �e′
2, �e′

3) such as the one represented in Figure 5.12.

e2, e2́
e2, e2́ e3́

e1, e1́ e1, e1́

e3, e3́ e3

FIGURE 5.12 Monoclinic material.
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The direction cosines of the primed axis with respect to the unprimed axis are given as

lij = cos(�e′
i, �ej) =

⎛
⎜⎝

1 0 0

0 1 0

0 0 −1

⎞
⎟⎠ (5.111)

It follows therefore that

D′
1111 = l1kl1ll1ml1nDklmn = l11l11l11l11D1111 = D1111 (5.112)

In a similar way, for this type of symmetry, it follows that when ( �e3) and ( �e′
3) are in the same

direction, we obtain

D′
1113 = l1kl1ll1ml3nDklmn = l11l11l11l33D1113D1113 = D1113 (5.113)

and when they are in the opposite direction, we obtain

D′
1113 = l1kl1ll1ml3nDklmn = l11l11l11l33D1113D1113 = −D1113 (5.114)

which is impossible. It follows therefore that D1113 = 0.
In a similar fashion, it can be shown that the number of elements is reduced from 21 to 13; that

is, the elastic matrix is written as follows:

[D] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1111 D1122 D1133 D1112 0 0

D2211 D2222 D2233 D2212 0 0

D3311 D3322 D3333 D3312 0 0

D1211 D1222 D1233 D1212 0 0

0 0 0 0 D2323 D2313

0 0 0 0 D1323 D1313

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.115)

Similarly, the compliance matrix becomes

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1111 C1122 C1133 C1112 0 0

C2211 C2222 C2233 C2212 0 0

C3311 C3322 C3333 C3312 0 0

C1211 C1222 C1233 C1212 0 0

0 0 0 0 C2323 C2313

0 0 0 0 C1323 C1313

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.116)
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5.4.2.2 Symmetry with respect to Three Orthogonal Planes

A material that exhibits symmetry of its elastic planes with respect to three orthogonal planes is
called an orthotropic material. Following the same reasoning as for the symmetry with respect to a
single plane, and equating terms to zero where contradictions arise, the elastic matrix reduces from
13 terms to 9:

[D] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1111 D1122 D1133 0 0 0

D2211 D2222 D2233 0 0 0

D3311 D3322 D3333 0 0 0

0 0 0 D1212 0 0

0 0 0 0 D2323 D2313

0 0 0 0 D1323 D1313

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.117)

5.4.2.3 Symmetry of Rotation with respect to One Axis

A material that posseses an axis of symmetry, in the sense that all rays at right angle to this axis have
the same elastic properties, is called a transversely isotropic material. If this axis is for example �e3,
as shown in Figure 5.13, then a change of basis obtained by rotation around �e3 will leave the elastic
properties unaltered. Making use of this property leads to

D1111 = D2222 D2323 = D1313

D1133 = D2233 D1212 = 1

2
(D1111 − D1122)

(5.118)

e3

e2

e1

FIGURE 5.13 Symmetry of rotation.
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The number of independent coefficient in the elastic matrix is now reduced to 5:

[D] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1111 D1122 D1133 0 0 0

D1122 D1111 D1133 0 0 0

D1133 D1133 D3333 0 0 0

0 0 0
1

2
(D1111 − D1122) 0 0

0 0 0 0 D1313 0

0 0 0 0 0 D1313

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.119)

The compliance matrix is obtained as

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1111 C1122 C1133 0 0 0

C1122 C1111 C1133 0 0 0

C1133 C1133 C3333 0 0 0

0 0 0 2(C1111 − C1122) 0 0

0 0 0 0 C1313 0

0 0 0 0 0 C1313

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.120)

5.4.3 ISOTROPIC MATERIAL

A material is isotropic if its elastic properties are the same in any direction and therefore do not depend
on the choice of the coordinates system. The elastic and compliance matrices remain unaltered by
any change of orthonormal basis. The use of these properties leads to

D1313 = 1

2
(D1111 − D1122) (5.121)

D3333 = D1111

D1133 = D1122 (5.122)

The elastic matrix is written as

[D] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1111 D1122 D1122 0 0 0

D1122 D1111 D1122 0 0 0

D1122 D1122 D1111 0 0 0

0 0 0
1

2
(D1111 − D1122) 0 0

0 0 0 0
1

2
(D1111 − D1122) 0

0 0 0 0 0
1

2
(D1111 − D1122)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.123)
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and the compliance matrix as

[C] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C1111 C1122 C1122 0 0 0

C1122 C1111 C1122 0 0 0

C1122 C1122 C1111 0 0 0

0 0 0 2(C1111 − C1122) 0 0

0 0 0 0 2(C1111 − C1122) 0

0 0 0 0 0 2(C1111 − C1122)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.124)

In fact, the elastic matrix possesses only two independent components.
Introducing the elastic properties λ and μ known as the Lamé’s constants, the stress–strain

relations for an isotropic material become

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ12

σ23

σ13

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ + 2μ λ λ 0 0 0

λ λ + 2μ λ 0 0 0

λ λ λ + 2μ 0 0 0

0 0 0 μ 0 0

0 0 0 0 μ 0

0 0 0 0 0 μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε11

ε22

ε33

γ12

γ23

γ13

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.125)

In index notation, the previous relationship is written as

σij = λδijεkk + 2μεij (5.126)

The compliance matrix is given as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε11

ε22

ε33

γ12

γ23

γ13

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ + 2μ

μ(3λ + 2μ)

−λ

2μ(3λ + 2μ)

−λ

2μ(3λ + 2μ)
0 0 0

−λ

2μ(3λ + 2μ)

λ + 2μ

μ(3λ + 2μ)

−λ

2μ(3λ + 2μ)
0 0 0

−λ

2μ(3λ + 2μ)

−λ

2μ(3λ + 2μ)

λ + 2μ

μ(3λ + 2μ)
0 0 0

0 0 0
1

μ
0 0

0 0 0 0
1

μ
0

0 0 0 0 0
1

μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ12

σ23

σ13

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.127)

which can also be written in index notation as

εij = −λδij

2μ(3λ + 2μ)
σnn + 1

2μ
σij (5.128)

Notice that in index notation the engineering shear strain γij is not used.
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5.4.3.1 Modulus of Elasticity

Let us consider a uniaxial tension or compression test. In this case, the only stress that is different
from zero is σ11. From Equation (5.127), it can be seen that all the shear strains γij are equal to zero.
The strain in the direction of the test is given as

ε11 = −λδij

2μ(3λ + 2μ)
σ11 + 1

2μ
σ11 (5.129)

This relation can be rearranged to give

σ11 = μ(3λ + 2μ)

(λ + μ)
ε11 = Eε11 (5.130)

which is the well-known Hooke’s law. Equation (5.130) shows the relationship between the elastic
modulus E and the Lamé constants λ and μ.

5.4.3.2 Poisson’s Ratio

From Equation (5.127), when only σ11 is different from zero, it can also be seen that the strains in
the directions 2 and 3 are given as

ε22 = ε33 = λ

2μ(3λ + 2μ)
σ11 = −λ

2(λ + μ)
ε11 = −νε11 = −E

ν
σ11 (5.131)

The coefficient ν = −λ/(2(λ+μ)) is called Poisson’s ratio. Equation (5.131) gives the relationships
between Poisson’s ratio and the Lamé constants.

5.4.3.3 Shear Modulus

Let us consider a pure shear test in the plane ( �e1, �e2) made by the directions 1 and 2. The only stress
that is different from zero is σ12 = τ. The stress–strain relations can be written as

σ12 = 2με12 = μγ12 (5.132)

The coefficient μ is called the shear modulus. It is much better known as G.

5.4.3.4 Bulk Modulus

Another test to consider is the application of hydrostatic compression or tension σ12 = σ23 = σ13 = 0.
In this test,

σ11 = σ22 = σ33 = 1

3
σii = p (5.133)

where p stands for hydrostatic pressure.
As a result of this test, the strains are also spherical

ε11 = ε22 = ε33 = 1

3
εii = εv (5.134)

where εv stands for volumetric strain.
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TABLE 5.1
Relationships between the Coefficients of Elasticity

λ, μ E, ν E, G

λ λ
Eν

(1 + ν)(1 − 2ν)

G(E − 2G)

3G − E

μ μ
E

2(1 + ν)
G

E
μ(3λ + 2μ)

λ + μ
E E

ν
λ

2(λ + μ)
ν

E − 2G

2G

K λ + 2

3
μ

E

3(1 − 2ν)

GE

3(3G − E)

It follows that

p =
(

λ + 2

3
μ

)
εv = Kεv (5.135)

The coefficient K is called the bulk modulus or the compressibility modulus.
Table 5.1 gives the relationships between the coefficients of elasticity.
Finally, the stress–strain relationships for an isotropic material can be written in terms of E

and ν as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ12

σ23

σ13

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= E

(1 + ν)(1 − 2ν)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − ν ν ν 0 0 0

ν 1 − ν ν 0 0 0

ν ν 1 − ν 0 0 0

0 0 0
1 − 2ν

2
0 0

0 0 0 0
1 − 2ν

2
0

0 0 0 0 0
1 − 2ν

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε11

ε22

ε33

γ12

γ23

γ13

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.136)

for the elastic matrix and as
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε11

ε22

ε33

γ12

γ23

γ13

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 1

E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −ν −ν 0 0 0

−ν 1 −ν 0 0 0

−ν −ν 1 0 0 0

0 0 0 2(1 + ν) 0 0

0 0 0 0 2(1 + ν) 0

0 0 0 0 0 2(1 + ν)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ12

σ23

σ13

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.137)

for the compliance matrix.
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5.4.4 PLANE STRESS AND PLANE STRAIN

In reality, all solids are three dimensional. Fortunately, for many problems that are of practical
interest, some simplifying assumptions can be made regarding the stress or strain distributions, and
solutions can be carried out in a relatively simpler manner. A solid with one dimension relatively
small compared to the two others and loaded in its plane can be analyzed using the plane stress
approach. The surfaces of the beam, shown in Figure 5.14 (z = ±t/2), are free of forces and therefore
the stress components σ33, σ13, and σ23 are equal to zero. If the beam is thin, it can be reasonably
assumed that these components are zero throughout the thickness of the beam, and the other stress
components σ11, σ22, and σ12 remain practically constant.

The nonzero stresses are σ11, σ22, and σ12. Therefore, Equation (5.137) becomes⎧⎪⎨
⎪⎩

ε11

ε22

γ12

⎫⎪⎬
⎪⎭ = 1

E

⎡
⎢⎣

1 −ν 0

−ν 1 0

0 0 2(1 + ν)

⎤
⎥⎦

⎧⎪⎨
⎪⎩

σ11

σ22

σ12

⎫⎪⎬
⎪⎭ (5.138)

Inverting expression (5.138) yields

⎧⎪⎨
⎪⎩

σ11

σ22

σ12

⎫⎪⎬
⎪⎭ = E

1 − ν2

⎡
⎢⎢⎣

1 ν 0

ν 1 0

0 0
(1 − ν)

2

⎤
⎥⎥⎦

⎧⎪⎨
⎪⎩

ε11

ε22

γ12

⎫⎪⎬
⎪⎭ (5.139)

It should be pointed out that in plane stress ε33 is not equal to zero and is given as

ε33 = −ν

E
(σ11 + σ22) (5.140)

Plane strain, on the other hand, occurs in a three-dimensional solid subject to a uniform loading
acting constantly along its length. A typical example is a very long strip footing subject to a
uniformly distributed load, as shown in Figure 5.15. In these conditions, change of thickness is

y

x

H

t
L

z

FIGURE 5.14 A state of plane stress.
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FIGURE 5.15 State of plane strain.

prevented. Therefore, the ends of the footing are prevented from moving in the z-direction; that is,
the displacement w of each face in the z-direction is equal to zero. By symmetry, at the mid-section
of the footing w must be also equal to zero. In such a case, the components of strain ε33, γ13, and
γ23 are equal to zero.

The nonzero stresses are ε11, ε22, and γ12. Therefore, Equation (5.136) becomes

⎧⎪⎨
⎪⎩

σ11

σ22

σ12

⎫⎪⎬
⎪⎭ = E

(1 + ν)(1 − 2ν)

⎡
⎢⎢⎣

1 − ν ν 0

ν 1 − ν 0

0 0
1 − 2ν

2

⎤
⎥⎥⎦

⎧⎪⎨
⎪⎩

ε11

ε22

γ12

⎫⎪⎬
⎪⎭ (5.141)

Inverting expression (5.141) yields⎧⎪⎨
⎪⎩

ε11

ε22

γ12

⎫⎪⎬
⎪⎭ = 1 + ν

E

⎡
⎢⎣

1 − ν −ν 0

−ν 1 − ν 0

0 0 2

⎤
⎥⎦

⎧⎪⎨
⎪⎩

σ11

σ22

σ12

⎫⎪⎬
⎪⎭ (5.142)

Note also that in a state of plane strain σ33 is not equal to zero but it is given as

σ33 = ν(ε11 + ε22) (5.143)

5.5 SOLVED PROBLEMS

5.5.1 PROBLEM 5.1

The stress tensor at a point P is given as

σ =
⎛
⎜⎝

2 4 3

4 0 0

3 0 −1

⎞
⎟⎠

Find the stress vector on a plane that passes through P and is parallel to the plane x+2y+2z−6 = 0.
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Solution

The function defining the surface of the plane can be written as

f (xyz) = x + 2y + 2z − 6 = 0.

The vector normal to the plane �V is obtained as

�V = ∂f

∂x
�e1 + ∂f

∂y
�e2 + ∂f

∂z
�e3 = 1 �e1 + 2 �e2 + 2 �e3

The normal unit vector �n to the plane is therefore obtained as

�n = 1 �e1 + 2 �e2 + 2 �e3

‖�V‖ = 1

3
�e1 + 2

3
�e2 + 2

3
�e3

Hence,

T1 = σ11n1 + σ21n2 + σ31n3 = 2 × 1

3
+ 4 × 2

3
+ 3 × 2

3
= 16

3

T2 = σ12n1 + σ22n2 + σ23n3 = 4 × 1

3
+ 0 × 2

3
+ 0 × 2

3
= 4

3

T3 = σ13n1 + σ23n2 + σ33n3 = 3 × 1

3
+ 0 × 2

3
− 1 × 2

3
= 1

3

5.5.2 PROBLEM 5.2

The state of stress at point is given with respect to the Cartesian axes (o, x, y, z) by the stress matrix

σ =

⎛
⎜⎜⎝

2 −2 0

−2
√

2 0

0 0 −√
2

⎞
⎟⎟⎠

• Determine the stress tensor σ′ in the Cartesian axes (o, x′, y′, z′) obtained by rotating the axes
(o, x, y, z) around z by 45◦ anticlockwise.

• Check the result using the engineering notation of stress.

Solution

Index and matrix notations
The basis ( �e′

1, �e′
2, �e′

3) is obtained from the basis ( �e1, �e2, �e3) by a rotation of 45◦ around �e3, as shown in
Figure 5.16. The transformation tensor lij (or matrix [Q]) are respectively given as

lij = cos(�e′
i, �ej) =

⎛
⎜⎜⎝

√
2/2

√
2/2 0

−√
2/2

√
2/2 0

0 0 1

⎞
⎟⎟⎠
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e3 e 3́

e 2́

e2

45°

e1
e1

FIGURE 5.16 Change of basis.

and

[Q] = [cos(�e′
i, �ej)] =

⎡
⎢⎢⎣

√
2/2

√
2/2 0

−√
2/2

√
2/2 0

0 0 1

⎤
⎥⎥⎦

The stress tensor σ′ in the basis ( �e′
1, �e′

2, �e′
3) is obtained as

σ′
km = lkilmjσij

Let us consider the first component σ′
11. It is obtained as

σ′
11 = l1il1jσij

= l11l11σ11 + l11l12σ12 + l11l13σ13

+ l12l11σ21 + l12l12σ22 + l12l13σ23

+ l13l11σ31 + l13l12σ32 + l13l13σ33

σ′
11 =

√
2

2

√
2

2
2 +

√
2

2

√
2

2
(−2) +

√
2

2
× 0 × 0

+
√

2

2

√
2

2
(−2) +

√
2

2

√
2

2

√
2 +

√
2

2
× 0 × 0

+ 0

√
2

2
× 0 + 0

√
2

2
× 0 + 0 × 0(−√

2) =
√

2

2
− 1

Repeating the same process for all the other terms we obtain

σ′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

√
2

2
− 1

√
2

2
− 1 0

√
2

2
− 1

√
2

2
+ 3 0

0 0 −√
2

⎞
⎟⎟⎟⎟⎟⎟⎠
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In matrix notation, the transformation is carried out as

[σ′] = [Q][σ][Q]T

=

⎡
⎢⎢⎣

√
2/2

√
2/2 0

−√
2/2

√
2/2 0

0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

2 −2 0

−2
√

2 0

0 0 −√
2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

√
2/2 −√

2/2 0
√

2/2
√

2/2 0

0 0 1

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

√
2

2
− 1

√
2

2
− 1 0

√
2

2
− 1

√
2

2
+ 3 0

0 0 −√
2

⎤
⎥⎥⎥⎥⎥⎥⎦

Engineering notation
According to the engineering notation, the stress transformation law is given as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ′
11

σ′
22

σ′
33

σ′
12

σ′
23

σ′
13

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos2 ψ sin ψ 0 2 sin ψ cos ψ 0 0

sin ψ cos2 ψ 0 −2 sin ψ cos ψ 0 0

0 0 1 0 0 0

− sin ψ cos ψ sin ψ cos ψ cos2 ψ − sin2 ψ 0 0 0

0 0 0 0 cos ψ − sin ψ

0 0 0 0 sin ψ cos ψ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

σ33

σ12

σ23

σ13

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Introducing the numerical values we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ′
11

σ′
22

σ′
33

σ′
12

σ′
23

σ′
13

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5 0.5 0 1 0 0

0.5 0.5 0 −1 0 0

0 0 1 0 0 0

−0.5 0.5 0 0 0 0

0 0 0 0

√
2

2
−

√
2

2

0 0 0 0

√
2

2

√
2

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
√

2

−√
2

−2

0

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2

2
− 1

√
2

2
+ 3

−√
2

√
2

2
− 1

0

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The results compare very well.
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5.5.3 PROBLEM 5.3

The Lagrangian description of the deformation of a body is given by

x1 = X1

x2 = X2 + 0.2X3

x3 = X3 + 0.2X2

• Determine the deformation gradients [F] and the Green Lagrange strain matrix [E].
• Calculate the change in squared length of the lines OA, AC, and the diagonal OC for the

small undeformed rectangle shown in Figure 5.17.

Solution

The deformation gradient is given by

Fij = ∂xi

∂Xi

≡ [F] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂x1

∂X1

∂x1

∂X2

∂x1

∂X3

∂x2

∂X1

∂x2

∂X2

∂x2

∂X3

∂x3

∂X1

∂x3

∂X2

∂x3

∂X3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎢⎣

1 0 0

0 1 0.2

0 0.2 1

⎤
⎥⎦

The Green Lagrange strain matrix is given as

[E] = 1

2

([F]T[F] − [I])

= 1

2

⎛
⎜⎝

⎡
⎢⎣

1 0 0

0 1 0.2

0 0.2 1

⎤
⎥⎦

⎡
⎢⎣

1 0 0

0 1 0.2

0 0.2 1

⎤
⎥⎦ −

⎡
⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎦

⎞
⎟⎠

=
⎡
⎢⎣

0 0 0

0 0.02 0.2

0 0.2 0.02

⎤
⎥⎦

0.3 mm

0.2 mm

X2

X3

O

C

A

X1

FIGURE 5.17 Displacement field (Problem 5.3).
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The change in squared length of an infinitesimal element is given in index notation as

‖d �s‖2 − ‖d�S‖2 = 2EijdXidXj

or in matrix notation as

‖d �s‖2 − ‖d�S‖2 = 2{dX}T[E]{dX}

The change in the squared length of the segment OA is obtained as

2
[
0 0.3 0

]
⎡
⎢⎣

0 0 0

0 0.02 0.2

0 0.2 0.02

⎤
⎥⎦

⎡
⎢⎣

0

0.3

0

⎤
⎥⎦ = 0.036 mm2

The change in the squared length of the segment AC is obtained as

2
[
0 0 0.2

]
⎡
⎢⎣

0 0 0

0 0.02 0.2

0 0.2 0.02

⎤
⎥⎦

⎡
⎢⎣

0

0

0.2

⎤
⎥⎦ = 0.0004 mm2

The change in the squared length of the segment OC is obtained as

2
[
0 0.3 0.2

]
⎡
⎢⎣

0 0 0

0 0.02 0.2

0 0.2 0.02

⎤
⎥⎦

⎡
⎢⎣

0

0.3

0.2

⎤
⎥⎦ = 0.0532 mm2

5.5.4 PROBLEM 5.4

Assuming small strain theory, determine the linear strain tensor [ε] for the displacement field
given by

�u = (x1 − x3)
2 �e1 + (x2 + x3) �e2 − x1x2 �e3

At point P(0, 2, −1), determine

• The engineering normal strain in the direction 8 �e1 − 1 �e2 + 4 �e3

• The change in right angle between �v1 = 8 �e1 − 1 �e2 + 4 �e3 and �v2 = 4 �e1 + 4 �e2 − 7 �e3

Solution

The linear strain tensor is given as

εij = 1

2

(
∂ui

∂xj

+ ∂uj

∂xi

)

or in matrix form as

[ε] = 1

2

([∇u] + [∇u]T
)
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The displacement gradient is given as

∂ui

∂xj

≡ [∇u] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂u1

∂x1

∂u1

∂x2

∂u1

∂x3

∂u2

∂x1

∂u2

∂x2

∂u2

∂x3

∂u3

∂x1

∂u3

∂x2

∂u3

∂x3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎢⎣

2(x1 − x3) 0 −2(x1 − x3)

0 2(x2 + x3) 2(x2 + x3)

−x2 −x1 0

⎤
⎥⎦

The linear strain tensor is therefore obtained as

[ε] = 1

2

⎛
⎜⎝

⎡
⎢⎣

2(x1 − x3) 0 −2(x1 − x3)

0 2(x2 + x3) 2(x2 + x3)

−x2 −x1 0

⎤
⎥⎦ +

⎡
⎢⎣

2(x1 − x3) 0 −x2

0 2(x2 + x3) −x1

−2(x1 − x3) 2(x2 + x3) 0

⎤
⎥⎦

⎞
⎟⎠

=

⎡
⎢⎢⎢⎢⎢⎢⎣

2(x1 − x3) 0 −(x1 − x3) − x2

2

0 2(x2 + x3) (x2 + x3) − x1

2

−(x1 − x3) − x2

2
(x2 + x3) − x1

2
0

⎤
⎥⎥⎥⎥⎥⎥⎦

At P(0, 2, −1), the strain tensor is given as

[ε] =
⎡
⎢⎣

2 0 −2

0 2 1

−2 1 0

⎤
⎥⎦

The unit vector in the direction �v1 = 8 �e1 − 1 �e2 + 4 �e3 is given by

�v1

‖ �v1‖ = 8

9
�e1 − 1

9
�e2 + 4

9
�e3

The engineering normal strain in this direction is given as

e =
[

8

9
−1

9

4

9

] ⎡
⎢⎣

2 0 −2

0 2 1

−2 1 0

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

8

9

−1

9

4

9

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= −6

81

The unit vector in the direction �v2 = 4 �e1 + 4 �e2 − 7 �e3 is given by

�v2

‖ �v2‖ = 4

9
�e1 + 4

9
�e2 − 7

9
�e3
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The change of right angle between �v1 and �v2 is given as

γ12 = 2

[
8

9
−1

9

4

9

] ⎡
⎣ 2 0 −2

0 2 1
−2 1 0

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎣

4

9
4

9

−7

9

⎤
⎥⎥⎥⎥⎥⎦

= 318

81

5.5.5 PROBLEM 5.5

A two-dimensional solid is deformed as shown in Figure 5.18. Under the restriction of small
deformation theory, determine the linear strain tensor. The solid lines represent the undeformed
state. Deduce the engineering form of the strain tensor. The dimensions are given in mm.

Solution

Comparing with Figure 5.11, it can be clearly seen that

ε11 = ∂u1

∂x1

≡ 0.02

2
= 0.01

ε22 = ∂u2

∂x2

≡ 0.036

3
= 0.012

γ1 = ∂u2

∂x1

≡ 0.010

2
= 0.005

γ2 = ∂u1

∂x2

≡ 0.012

3
= 0.004

γ12 = γ1 + γ2 = 0.009

ε12 = γ12

2
= 0.0045

2.0

3.00

0.036

0.012

0.010

x1

x2

0.020

FIGURE 5.18 Displacement field (Problem 5.5).
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The strain tensor is given as

[ε] =
[

0.01 0.0045
0.0045 0.012

]

Using engineering notation the strain tensor is given in a vector form as

{ε} =

⎧⎪⎨
⎪⎩

ε11

ε22

γ12

⎫⎪⎬
⎪⎭ =

⎧⎪⎨
⎪⎩

εxx

εyy

γxy

⎫⎪⎬
⎪⎭ =

⎧⎨
⎩

0.01
0.012
0.009

⎫⎬
⎭

5.5.6 PROBLEM 5.6

A 45◦ strain rosette measures longitudinal strain along the axes shown in Figure 5.19. The following
readings are obtained at point P: ε11 = 0.005, ε′

11 = 0.004, and ε22 = 0.007 mm/mm. Determine
the shear strain γ12 at the point.

Solution

The unit vector in the direction X′
1 is given as

�n =
√

2

2
�e1 +

√
2

2
�e2 + 0 �e3

The stretch or engineering normal strain in the direction X′
1 is given as

e =
[√

2

2

√
2

2
0

]⎡
⎢⎣

0.005 ε12 0

ε12 0.007 0

0 0 0

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

√
2

2
√

2

2

0

⎤
⎥⎥⎥⎥⎥⎥⎦

= 0.004

It follows therefore that

2

4
(2ε12 + 0.012) = 0.004 ⇒ γ12 = −0.004

X2

X 1́

45°

X1

FIGURE 5.19 Strain rosette.
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5.5.7 PROBLEM 5.7

Consider a cube of an isotropic linear elastic body whose edges are 10 mm long sitting in a rigid
mold with a gap of 0.02 mm between the faces of the mold and that of the cube (Figure 5.20).

Determine the pressure on the lateral faces and the maximum shearing stress in the cube when the
uniform pressure applied in the z-direction reaches 1200 MPa. Take E = 60,000 MPa, and ν = 0.3.

Solution

First check that the pressure is causing enough lateral strains for the cube to reach the wall.
If we assume that the walls are inexistent, then only nonzero stress is σ33. It follows from the

strain–stress relations that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε11

ε22

ε33

γ12

γ23

γ13

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 1

E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −ν −ν 0 0 0

−ν 1 −ν 0 0 0

−ν −ν 1 0 0 0

0 0 0 2(1 + ν) 0 0

0 0 0 0 2(1 + ν) 0

0 0 0 0 0 2(1 + ν)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

0

σ33

0

0

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

which yields

ε11 = ε22 = −μ

E
σ33 = − 0.3

60000
(−1,200) = 0.006

The displacement of the lateral faces is �L = 0.006×10 = 0.06 mm, which is the total displacement.
Therefore, each face is displaced by 0.03 mm, which is greater than the 0.02 mm gap. As a
result, lateral forces will develop preventing the lateral faces from expanding more than 0.02 mm
(Figure 5.21).

At contact, the lateral strains in the cube will be equal to

ε11 = ε22 = −0.04

10
= 0.004

Since the loading is in the principal directions, the only nonzero strains and stresses are ε11,
ε22, ε33, σ11, σ22, and σ33, of which ε11, ε22, σ33 are known, and σ11, σ22, ε33 are the unknowns.

x

y

y

0.02 mm

0.02 mm

z

x

FIGURE 5.20 Problem 5.7.
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0.03 mm

0.03 mm

FIGURE 5.21 Displacements without the rigid walls.

The stress–strain relations can therefore be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.004

0.004

ε33

0

0

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 1

E

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −ν −ν 0 0 0

−ν 1 −ν 0 0 0

−ν −ν 1 0 0 0

0 0 0 2(1 + ν) 0 0

0 0 0 0 2(1 + ν) 0

0 0 0 0 0 2(1 + ν)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ11

σ22

−1200

0

0

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

which yield three equations

0.004 = 1

60000
(σ11 − 0.3σ22 + 0.3 × 1,200)

0.004 = 1

60000
(−0.3σ11 + σ22 + 0.3 × 1,200)

ε33 = 1

60000
(−0.3σ11 − 0.3σ22 − 1,200)

Solving the system of equations yields

σ11 = σ22 = −171.43 MPa

and

ε33 = −0.018

The maximum shear stress is given as

σs = 1

2
(σ11 − σ33) = 1

2
(−171.43 + 1200) = 514.3 MPa
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5.5.8 PROBLEM 5.8

The displacement field of a circular bar that is being twisted by equal and opposite end moments is
given by

u1 = 0

u2 = −2 × 10−5x1x3

u3 = 2 × 10−5x1x3

The length of the bar is 2000 mm and the diameter is 400 mm. If the bar is made of an
isotropic linear elastic material with E = 2.1 × 105 MPa, and ν= 0.3, using small deformation
theory, determine the state of stress in the points (2000, 100, 100) and (1000, 100, 100). What can
be concluded about the variation of the stress along the length of the beam?

Solution

The displacement gradient is given as

[∇u] =
⎡
⎢⎣

0 0 0

−2 × 10−5x3 0 −2 × 10−5x1

2 × 10−5x2 2 × 10−5x1 0

⎤
⎥⎦

The strain tensor (small deformations) is given as

[ε] = 1

2

([∇u] + [∇u]T
) =

⎡
⎢⎣

0 −1 × 10−5x3 1 × 10−5x2

−1 × 10−5x3 0 0

1 × 10−5x2 0 0

⎤
⎥⎦

It can be seen that the strain tensor is not a function of the x1 coordinate:

[ε(2000, 100, 1000)] = [ε(1000, 100, 1000)] =
⎡
⎢⎣

0 −1 × 10−3 1 × 10−3

−1 × 10−3 0 0

1 × 10−3 0 0

⎤
⎥⎦

The stresses do not vary along the length of the beam:

[σ] =
⎡
⎢⎣

0 −161.54 161.54

−161.54 0 0

161.54 0 0

⎤
⎥⎦ MPa
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6 Weighted Residual
Methods

6.1 INTRODUCTION

In Chapters 2 and 3, we used well-known methods of structural analysis to develop the
stiffness matrices of the bar and beam elements. The reason being that these elements are
one-dimensional, and the exact solutions of the differential equations governing their behaviors
are well known. For other structural problems in two and three dimensions, such direct approaches
are inexistent for the obvious reason that it is not possible to find analytical solutions to the differen-
tial equations governing their behavior, except in the case of very simple geometries. The alternative
is to replace the differential equations by approximate algebraic equations. This is achieved by using
weighted residual methods.

6.2 GENERAL FORMULATION

Given a physical problem (be it structural or not) whose behavior is governed by a set of differential
equations:

B({u}) = 0 on � (6.1)

where
B( ) represents a linear differential operator
{u} is the unknown function
� is the geometrical domain

Since the variable {u} is unknown, we may try to substitute for it a trial or approximate function of
our choosing, say {u} given as a polynomial function:

{u} =
n∑

i=1

αiPi({x}) (6.2)

where
the coefficients αi are general parameters
Pi({x}) is a polynomial base

Substituting {u} for {u} will not in general satisfy the differential equation (6.1) and will result in a
residual over the domain �; that is,

B({u}) �= 0 on � (6.3)

The essence of the weighted residual methods is to force the residual to zero in some average over
the whole domain �. To do so, we multiply the residual by a weighting function ψ and force the
integral of the weighted residual to zero over the whole domain; that is,

{W} =
�
�

ψB({u}) d� = 0 (6.4)

175
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There is a variety of residual methods such as collocation method, subdomain method, least-squares
method, method of moments, and Galerkin method. They all differ in the choice of the weighting
function ψ. The most popular however is the Galerkin method, and it is the only one described in
this chapter.

6.3 GALERKIN METHOD

In the Galerkin method, the weighting function is simply the variation of the trial function itself;
that is,

ψ = δ{u} =
n∑

i=1

δαiPi({x}) (6.5)

Substituting for ψ and {u}, Equation (6.4) becomes

{W} =
�
�

n∑
i=1

δαiPi({x})B
(

n∑
i=1

αiPi({x})
)

d� = 0

= {δαi}T
�
�

Pi({x})
(

B

(
n∑

i=1

αiPi({x})
))

d� = 0 (6.6)

Since the preceding relation must equal zero for any arbitrary δαi, it can be written as

W1 =
�
�

P1({x})
(

B

(
n∑

i=1

αiPi({x})
))

d� = 0

W2 =
�
�

P2({x})
(

B

(
n∑

i=1

αiPi({x})
))

d� = 0

... = ... (6.7)

Wn =
�
�

Pn({x})
(

B

(
n∑

i=1

αiPi({x})
))

d� = 0

The system of Equations (6.7) can be solved for the unknown coefficients αi.

Example

Let us consider the following differential equation:

B(u(x)) = d2u(x)
dx2

+ u(x) on � = [0, 1] (6.8)

with boundary conditions

u(x = 0) = 1

u(x = 1) = 0
(6.9)
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This differential equation has an exact solution given by

u(x) = 1 − sin(x)
sin(1)

(6.10)

Let us solve the differential equation using the method of Galerkin. We choose the approximating
function u(x) in the form of a polynomial:

u(x) = α0 + α1x + α2x2 (6.11)

To ensure that the trial function u(x) approximate the exact function u(x) as best as possible, we
need to make sure that it is derivable as many times as required by the differential operator and
satisfies the boundary conditions; that is,

u(x = 0) = 1 ⇒ α0 = 1

u(x = 1) = 0 ⇒ 1 + α1 + α2 = 0

⇒ α1 = −(1 + α2)

(6.12)

The trial function therefore becomes

u(x) = α2(x2 − x) − x + 1 (6.13)

It is twice derivable and satisfies the boundary conditions. Substituting u(x) in Equation (6.8), the
residual is written as

R(u(x)) = d2u(x)
dx2

+ u(x)

= α2(x2 − x + 2) − x (6.14)

The corresponding weighting function is obtained as

ψ = δu(x) = δα2(x2 − x) (6.15)

Integrating the product of the weighted residual over the domain yields

W =
+1�
0

δα2(x2 − x) × (α2(x2 − x + 2) − x) dx = 0 (6.16)

Since δα2 �= 0, it follows

W =
+1�
0

(x2 − x) × (α2(x2 − x + 2) − x) dx = 0 (6.17)

Evaluating the integral leads to an algebraic equation of the form

1
12

− 3
10

α2 = 0 ⇒ α2 = 5
18

(6.18)

The final approximation is then written as

u(x) = 5
18

(x2 − x) − x + 1 (6.19)

Figure 6.1 shows a graphical comparison between the exact solution, Equation (6.10), and the
approximate solution, Equation (6.19). With only one parameter α2, the approximate solution is
very acceptable.
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1

0.9
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0.5

0.4
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0.3

0.2

0.2

0.1

0
0

u(
x)

, u
(x

)

Exact solution
Approximate solution

Distance x

FIGURE 6.1 Graphical comparison of exact and approximate solution.

6.4 WEAK FORM

Given the following differential equation

B(u(x)) = d2u(x)

dx2
+ u(x) + x = 0 on � = [0, 1] (6.20)

with boundary conditions

u(x = 0) = g essential

du

dx
(x = 1) = p natural

(6.21)

with g and p being real constants. The first boundary conditions imposed on u(x) is termed essential,
while the second boundary condition imposed on its derivative is termed natural. If we apply the
weighted residual Equation (6.4) to the differential Equation (6.20), we obtain

1�
0

ψ
(d2u(x)

dx2
+ u(x) + x

)
dx = 0 (6.22)

We could also do the same thing to the natural boundary condition given in the form of a differential
equation; that is,

[(d u

dx
− p

)
ψ

]
(x=1)

= 0 (6.23)

Since both expressions (6.22) and (6.23) are equal to zero, we can write

1�
0

ψ
(d2u(x)

dx2
+ u(x) + x

)
dx =

[(d u

dx
− p

)
ψ

]
(x=1)

(6.24)
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Equation (6.24) is an integral form of the differential Equation (6.20) and its natural boundary
condition.

In Equation (6.24), the trial function u(x) must not only satisfy the essential boundary condition
but it should also be derivable twice as required by the differential operator in order to approach the
exact function u(x). On the other hand, the function ψ does not need to be continuous at all.

Now, let us integrate Equation (6.24) by part once:

1�
0

(
(u(x) + x)ψ − d u(x)

dx

dψ

dx

)
dx +

[
pψ

]1

0
= 0 (6.25)

Notice that both the functions u(x) and ψ must be only derivable once. In other words, we have
alleviated the condition of continuity imposed on u(x) by one and increased that imposed on ψ by
one as well.

If we continue to integrate by part, we obtain

1�
0

(
(u(x) + x)ψ + u(x)

d2ψ

dx2

)
dx +

[
pψ − u(x)

dψ

dx

]1

0
= 0 (6.26)

We end up with an identical problem to Equation (6.24); this time the function ψ needs to be derivable
twice, while the function u(x) does not have to be continuous at all. It follows therefore that Equation
(6.25) is the most appropriate. It is called the weak form. In addition, when the Galerkin method is
used, the functions u(x) and ψ have the same degree of continuity since ψ = δu(x).

6.5 INTEGRATING BY PART OVER TWO AND THREE DIMENSIONS
(GREEN THEOREM)

In the previous section, it was shown that the order of the derivative was lowered by integrating by part
the residual. Integration by part is relatively easy to carry out over one dimension. However, many
engineering problems of practical importance are defined over two or three dimensions. Integrating
by parts over such domains is more challenging. Fortunately, it can be done by means of the Green
theorem.

Let us evaluate by part the following integral

��
�

�
∂�

∂x
dxdy (6.27)

over the domain � represented in Figure 6.2.
First let us integrate by part with respect to the variable x using the well-known formula

XR�
XL

UdV = (UVx=xR
− UVx=xL

) −
XR�

XL

VdU (6.28)

It follows therefore that

��
�

�
∂�

∂x
dxdy = −

��
�

∂�

∂x
�dxdy +

YT�
YB

[(φψ)x=XR
− (φψ)x=XL

]dy (6.29)
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YB

YT

n

Γ

Ω

XL XR

FIGURE 6.2 Integration by parts in two and three dimensions.

If we consider an infinitesimal element of the boundary, d�, on the right side, we can write

dy = nxd� (6.30)

where nx is the director cosine of the angle formed by the normal −→n with the axis x, as shown in
Figure 6.3. On the left side of the boundary, we have

dy = −nxd� (6.31)

It follows therefore that the last term of Equation (6.29) can be written in the form of a curvilinear
integral as �

�

��nxd� (6.32)

Finally, the integral in (6.27) is rewritten as

��
�

�
∂�

∂x
dxdy = −

��
�

∂�

∂x
�dxdy +

�
�

��nxd� (6.33)

dy

dx

dΓ

n

FIGURE 6.3 Infinitesimal element of the boundary.

© 2013 by Taylor & Francis Group, LLC



Weighted Residual Methods 181

In the same manner, if we integrate along the direction y, we obtain

��
�

�
∂�

∂y
dxdy = −

��
�

∂�

∂y
�dxdy +

�
�

��nyd� (6.34)

Remark: � represents a surface when � is a three-dimensional space.

Example: Weak form of equilibrium equations

The equilibrium equations of a deformable body in three-dimensions are given as

∂σxx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
+ bx = 0

∂τxy

∂x
+ ∂σyy

∂y
+ ∂τyz

∂z
+ by = 0

∂τxz

∂x
+ ∂τyz

∂y
+ ∂σzz

∂z
+ bz = 0

(6.35)

or in a more compact form as

L([σ]) = F([σ]) + {b} = 0 (6.36)

with

F([σ]) = [∇([σ])]T

∇ =
[ ∂

∂x
,

∂

∂y
,

∂

∂z

]

and

[σ] =
⎡
⎣σxx τxy τxz

τxy σyy τyz

τxz τyz σzz

⎤
⎦

Let us apply the equation of the weighted residuals to (6.36), and as a weighting function, we
choose virtual displacements such that ψ = δ{U} = δ[u, v, w]T ; that is,

�
V

δ{U}T{F([σ]) + {b}} dV = 0 (6.37)

where V designates the volume of the solid. Equation (6.37) can be developed in the following
form:

�
V

[
δu

(∂σxx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
+ bx

)
+ δv

(∂τxy

∂x
+ ∂σyy

∂y
+ ∂τyz

∂z
+ by

)

+ δw
(∂τxz

∂x
+ ∂τyz

∂y
+ ∂σzz

∂z
+ bz

)]
dV (6.38)

To obtain the weak form of expression (6.38), we will integrate it by part using the theorem of
Green. First let us consider only the first term:

�
V

δu
∂σxx

∂x
dV =

�
A

δuσxxlxdA −
�
V

σxx
∂(δu)

∂x
dV (6.39)

where A is the surface representing the boundary of the domain V.

© 2013 by Taylor & Francis Group, LLC



182 Introduction to Finite Element Analysis Using MATLAB� and Abaqus

After repeating the integration by part for all the terms of Equation (6.38), we obtain

�
V

(
σxx

∂(δu)

∂x
+ τxy

(∂(δu)

∂y
+ ∂(δv)

∂x

)
+ τxz

(∂(δu)

∂z
+ ∂(δw)

∂x

)
+ · · · + σzz

∂(δw)

∂z

− δubx − δvby − δwbz

)
dV +

�
A

(
δu(σxxlx + τxyly + τxzlz)

+ δv(τxylx + σyyly + τyzlz) + δw(τxzlx + τyzly + σzzlz)
)
dA = 0 (6.40)

The operator δ( ) is linear and has the following properties:

∂(δu)

∂x
= δ(∂u)

∂x
= δ

(∂u)

∂x
= δεxx (6.41)

It follows therefore that the variations of the partial derivatives of the displacements in Equation
(6.40) can be grouped as

δ{ε}T =
[
δ
(∂u)

∂x
, δ

(∂v)

∂y
, . . . ,

(
δ
(∂w)

∂x
+ δ

(∂u)

∂z

)]T

(6.42)

The first nine terms of the integral of the volume of Equation (6.40) can be grouped as

�
V

δ{ε}T{σ} dV (6.43)

and the remaining terms as

−
�
V

δ{U}T{b} dV (6.44)

As to the terms resulting from the integral over the area, they can be grouped as

−
�
A

δ{U}T{t} dA (6.45)

where {t} is the stress vector given as

{t} =
⎧⎨
⎩

tx

ty

tz

⎫⎬
⎭ =

⎧⎨
⎩

σxxlx + τxyly + τxzlz
τxylx + σyyly + τyzlz
τxzlx + τyzly + σzzlz

⎫⎬
⎭

Equation (6.40) can then be rewritten as

�
V

δ{ε}T{σ} dV =
�
V

δ{U}T{b} dV +
�
A

δ{U}T{t} dA (6.46)

Expression (6.46) is nothing but the expression of the theorem of virtual work, which states: If a
deformable body in equilibrium is subjected to an arbitrary virtual displacement field associated
with a compatible deformation of the body, the virtual work of external forces on the body is
equal to the virtual strain energy of the internal stresses. It can be therefore concluded that the
theorem of virtual work is the weak form of the equilibrium equations.
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6.6 RAYLEIGH RITZ METHOD

6.6.1 DEFINITION

A functional � is a function of a set of functions and their derivatives:

� = �
(

u,
∂u

∂x
,
∂2u

∂x2
, . . .

)
(6.47)

The first variation of � is defined as

δ� = ∂�

∂u
δu + ∂�

∂
(

∂u
∂x

)δ

(
∂u

∂x

)
+ · · · (6.48)

where δu and δ

(
∂u

∂x

)
are arbitrary variations of u and

∂u

∂x
.

6.6.2 FUNCTIONAL ASSOCIATED WITH AN INTEGRAL FORM

Consider Equation (6.25). If we adopt the method of Galerkin and substituting δu(x) for ψ, we
obtain

1�
0

(
(u(x) + x)δu(x) − d u(x)

dx

dδu(x)

dx

)
dx +

[
pδu(x)

]1

0
= 0 (6.49)

which can be rewritten as

δ
[1

2

1�
0

u(x)2dx − 1

2

1�
0

(d u(x)

dx

)2

dx +
1�

0

xu(x)dx + [
pu(x)

]
x=1

]
= 0 (6.50)

or simply as

δ� = 0 (6.51)

where � is a functional given by

� = 1

2

1�
0

u(x)2dx − 1

2

1�
0

(d u(x)

dx

)2

dx +
1�

0

xu(x)dx + [
pu(x)

]
x=1

(6.52)

It can be clearly seen that � is a function of u(x) and its derivatives.

6.6.3 RAYLEIGH RITZ METHOD

If the functional is known, then the Rayleigh Ritz method can be used to discretize it; that is, to
replace it with algebraic equations. The method consists in finding trial functions such as the one
given by Equation (6.2) that satisfy the essential boundary conditions and minimize the functional:

δ� = 0 (6.53)

If we substitute for u(x) using Equation (6.2), the variation of the functional becomes

δ� = ∂�

∂α1

δα1 + ∂�

∂α2

δα2 + · · · + ∂�

∂αn

δαn = 0 (6.54)
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Since δ� must be equal to zero for any arbitrary δαi, it follows

∂�

∂α1

= 0

∂�

∂α2

= 0

...
...

∂�

∂αn

= 0

(6.55)

which constitutes a system of n equations that could be solved for the parameters αi.

Example

Consider the following functional

� = 1
2

1�
0

u(x)2 dx − 1
2

1�
0

(d u(x)
dx

)2

dx +
1�

0

xu(x) dx (6.56)

which is associated to the following differential equation

B(u(x)) = d2u(x)
dx2

+ u(x) + x = 0 on � = [0, 1] (6.57)

with essential conditions

u(x = 0) = 0

u(x = 1) = 0
(6.58)

The analytical solution for the aforementioned differential equation is given by

u(x) = sin(x)
sin(1)

− x (6.59)

Applying the method of Rayleigh Ritz to expression (6.56) consists first in finding trial functions
that satisfy the essential boundary conditions; that is,

u1 = x(x − 1)α1 One parameter

u2 = x(x − 1)(α1 + α2x) Two parameters
(6.60)

Substituting the first trial function in expression (6.56) leads to

�1 = 1
2

1�
0

(
α2

1(x
2 − x)2 − α2

1(2x − 1)2 + 2α1x2(x − 1)
)
dx

= 1
2

1�
0

(
α2

1x4 + (α1 − α2
1)2x3 + (3α2

1 + 2α1)x2 + 4α2
1x − α2

1

)
dx (6.61)

Evaluating the integral yields

�1 = − 3
20

α2
1 − 1

12
α1 (6.62)
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Taking the first variation of �1, we obtain

δ�1 = ∂�1

∂α1
δα1 = 0 = − 6

20
α1 − 1

12
(6.63)

Solving for α1, we obtain

α1 = −5
18

(6.64)

The trial function can therefore be written as

u1(x) = −5
18

x(x − 1) (6.65)

Substituting the second trial function with two parameters in expression (6.56) and integrating
leads to

�2 = − 3
20

α2
1 − 13

210
α2 − 3

20
α1α2 − 1

12
α1 − 1

20
α2 (6.66)

Taking the first variation of �2 with respect to α1 and α2, we obtain

δ�2 = ∂�2

∂α1
δα1 = − 3

10
α1 − 3

20
α2 − 1

12
= 0

δ�2 = ∂�2

∂α2
δα2 = − 3

20
α1 − 13

105
α2 − 1

20
= 0

(6.67)

Solving for α1 and α2, we obtain

α1 = −71
369

α2 = −7
41

(6.68)

The trial function can therefore be written as

u2(x) = x(x − 1)
(

− 71
369

− 7x
41

)
(6.69)

Figure 6.4 shows a graphical comparison between the exact solution, Equation (6.59), and
the approximate solutions, Equation (6.65) with one parameter and Equation (6.69) with two
parameters. The approximate solution with two parameters is more precise.

6.6.4 EXAMPLE OF A NATURAL FUNCTIONAL

The total potential energy of a structure or solid in equilibrium is defined as the sum of the internal
energy (strain energy) and the external energy (the potential energy of the externally applied forces);
that is,

� = Ui + Ue (6.70)

For conservative systems (no dissipation of energy), the loss in external potential energy must be
equal to the work, W, done by the external forces on the system:

−Ue = W (6.71)
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FIGURE 6.4 Graphical comparison of the exact and approximate solutions.

Therefore, the total energy can be written as

� = Ui − W (6.72)

Furthermore, � is a functional since it is a function of functions (displacements) and their derivatives
(strains). The minimum of potential energy requires that � becomes minimal for a stable equilibrium
configuration of the structure to exist:

δ� = δUi − δW = 0 (6.73)

The term δUi represents the variation in strain energy and is given as

δUi =
�
V

δ{ε}T{σ} dV (6.74)

The term δW represents the work done by the external forces on the system, which comprises the
work done by the body forces {b}, the surface tractions {t} and any concentrated forces {Pi}, i = 1, n:

δW =
�
V

δ{U}T{b} dV +
�
A

δ{U}T{t} dA + �iδ{U}T
({x}={x}i)

{Pi} (6.75)

Finally, the variation of the total energy can be written as

δ� =
�
V

δ{ε}T{σ} dV −
�
V

δ{U}T{b} dV −
�
A

δ{U}T{t} dA − �iδ{U}T
({x}={x}i)

{Pi} = 0 (6.76)

Example

Use the Rayleigh Ritz method to derive the stiffness matrix of the beam element shown in
Figure 3.3.
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The total energy of the beam element shown in Figure 3.3 is given as

� =
L�

0

EI
2

(d2w
dx2

)2

dx −
L�

0

w(x)q(x) dx − F1w(x=0) − F2w(x=L)

− M1

(dw
dx

)
(x=0)

− M2

(dw
dx

)
(x=L)

(6.77)

Expression (6.77) is also the functional associated with the weak form of the fourth-order
differential equation of beam flexure given by Equation (3.5).

It is interesting to note that in Equation (6.77) the highest order derivative is only of order 2. It
is recommended therefore to use a trial function that is at least twice derivable and satisfies the
essential boundary conditions imposed on w(x) and its first derivative dw/dx. The function w(x)
takes on the values of w1 at x = 0, and the value of w2 at x = L, while the derivative (the slope)
dw/dx takes the values of θ1 at x = 0, and the value of θ2 at x = L. A suitable trial function for
the problem at hand would be

w(x) = α1 + α2 × x + α3 × x2 + α4 × x3 (6.78)

Expression (6.78) can be rewritten in a matrix form as

w(x) = [
1 x x2 x3

]
⎧⎪⎪⎨
⎪⎪⎩

α1

α2

α3

α4

⎫⎪⎪⎬
⎪⎪⎭

(6.79)

Note that θ(x) is obtained by formally deriving w(x) with respect to x:

θ(x) = α2 + 2α3 × x + 3α4 × x2 (6.80)

There are four parameters α1, α2, α3, and α4, which can be identified using the four nodal values
{w1, θ1, w2, θ2}T . Evaluating w(x) and θ(x) at nodes 1 and 2, where x is respectively equal to 0
and L, results in

w(x = 0) = α1 = w1

θ(x = 0) = α2 = θ1

w(x = L) = α1 + α2 × L + α3 × L2 + α4 × L3 = w2

θ(x = L) = α2 + 2α3 × L + 3α4 × L2 = θ2

Solving for the parameters αi and rearranging the results in a matrix form yields

⎧⎪⎪⎨
⎪⎪⎩

α1

α2

α3

α4

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0

− 3
L2

−2
L

3
L2

−1
L

2
L2

1
L

− 2
L3

1
L2

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

w1

θ1

w2

θ2

⎫⎪⎪⎬
⎪⎪⎭

(6.81)

Substituting for αi in (6.78) results in

w(x) = [
1 x x2 x3

]
⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0

− 3
L2

−2
L

3
L2

−1
L

2
L2

1
L

− 2
L3

1
L2

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

w1

θ1

w2

θ2

⎫⎪⎪⎬
⎪⎪⎭

(6.82)
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Carrying out the matrix multiplication yields

w(x) = [
N1(x) N2(x) N3(x) N4(x)

]
⎧⎪⎪⎨
⎪⎪⎩

w1

θ1

w2

θ2

⎫⎪⎪⎬
⎪⎪⎭

(6.83)

with

N1(x) = (
1 − 3x2/L2 + 2x3/L3

)
(6.84)

N2(x) = (
x − 2x2/L + x3/L2

)
(6.85)

N3(x) = (
3x2/L2 − 2x3/L3

)
(6.86)

N4(x) = (−x2/L + x3/L2
)

(6.87)

In a more compact form, Equation (6.83) may be rewritten as

w(x) = [N]{de} (6.88)

As opposed to expression (6.78), which is a general approximation with general parameters αi,
expression (6.83) is a nodal approximation. Nodal approximations will be treated in more detail
in Chapter 7.

From engineering beam theory, the bending moment M(x) is the resultant of the stresses acting
above and below the neutral axis and is related to the curvature χ(x) through Equation (3.3).
Substituting for w(x) using Equation (6.83), the curvature can be approximated as

χ = d2w(x)
dx2

=
[

d2N1(x)
dx2

d2N2(x)
dx2

d2N3(x)
dx2

d2N4(x)
dx2

]
⎧⎪⎪⎨
⎪⎪⎩

w1

θ1

w2

θ2

⎫⎪⎪⎬
⎪⎪⎭

(6.89)

which is usually written as

χ = d2w(x)
dx2

= [B]{de} (6.90)

The matrix [B] contains the second derivatives of the functions Ni(x):

[B] =
[(

− 6
L2

+ 12x
L3

) (
−4

L
+ 6x

L2

) (
6
L2

− 12x
L3

) (
−2

L
+ 6x

L2

)]
(6.91)

Taking the first variation of expression (6.77) and equating it to zero yields

δ� =
L�

0

(δχ)EI(χ) dx −
L�

0

δw(x)q(x) dx − δw(x=0)F1 − δw(x=L)F2

− δ

(
dw(x=0)

dx

)
M1 − δ

(
dw(x=L)

dx

)
M2 = 0 (6.92)

Substituting in (6.92) for w(x) and χ using respectively Equations (6.83) and (6.90) yields

L�
0

δ{de}T[B]TEI[B]{de} dx =
L�

0

δ{de}T[N]Tq(x) dx + δ{de}T[N(x=0)]TF1 + δ{de}T[N(x=L)]TF2

+ δ{de}T

(
d[N(x=0)]T

dx

)
M1 + δ{de}T

(
d[N(x=L)]T

dx

)
M2 (6.93)
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After evaluating the derivatives and taking into account that δ{de} is independent of the
coordinates x, Equation (6.93) can be rewritten as

[
L�

0

[B]TEI[B] dx

]
{de} =

L�
0

⎧⎪⎪⎨
⎪⎪⎩

N1(x)
N2(x)
N3(x)
N4(x)

⎫⎪⎪⎬
⎪⎪⎭

q(x) dx +

⎧⎪⎪⎨
⎪⎪⎩

1
0
0
0

⎫⎪⎪⎬
⎪⎪⎭

F1 +

⎧⎪⎪⎨
⎪⎪⎩

0
0
1
0

⎫⎪⎪⎬
⎪⎪⎭

F2 +

⎧⎪⎪⎨
⎪⎪⎩

0
1
0
0

⎫⎪⎪⎬
⎪⎪⎭

M1 +

⎧⎪⎪⎨
⎪⎪⎩

0
0
0
1

⎫⎪⎪⎬
⎪⎪⎭

M2 (6.94)

Substituting for [B] using Equation (6.91) and evaluating the integral in the left-hand side of
Equation (6.94) yields the stiffness matrix of the beam element as

[Ke] =

⎡
⎢⎢⎣

12EI/L3 6EI/L2 −12EI/L3 6EI/L2

6EI/L2 4EI/L −6EI/L2 2EI/L
−12EI/L3 −6EI/L2 12EI/L3 −6EI/L2

6EI/L2 2EI/L −6EI/L2 4EI/L

⎤
⎥⎥⎦ (6.95)

Note that the matrix [Ke] is exactly the same as the stiffness matrix given in expression (3.30).
Substituting for Ni(x) using Equation (6.84), evaluating the integral on the right-hand side of

Equation (6.94), and assuming q(x) = q constant yields

L�
0

⎧⎪⎪⎨
⎪⎪⎩

N1(x)
N2(x)
N3(x)
N4(x)

⎫⎪⎪⎬
⎪⎪⎭

qdx =

⎧⎪⎪⎨
⎪⎪⎩

qL/2
qL2/12
qL/2

−qL2/12

⎫⎪⎪⎬
⎪⎪⎭

(6.96)

As can be noticed, Equation (6.96) transforms a uniformly distributed load into statically equivalent
nodal loads.
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7 Finite Element
Approximation

7.1 INTRODUCTION

In Chapters 2 through 4, we dealt with skeletal structures whose discretization into an assembly of
elements was relatively easy. Whether it is a truss, beam, or portal frame, intuitively the structure
can be represented as an assembly of one-dimensional members, for which the exact solutions to
the differential equations for each member are well known. However, with a solid continuum such
as a reinforced concrete shell or a gravity concrete dam, such an intuitive approach does not exist.
For example, a planar surface can be discretized with any element belonging to the triangular or
quadrilateral families of elements, a three-dimensional solid can be discretized with any element
belonging to the tetrahedron, rectangular prism, or brick families of elements. The choice of the
element type is a matter for the analyst. However, the exact solutions to the differential equa-
tions governing the behavior of such elements are not known. To establish the matrix relationship
between the forces and the nodal displacements at the nodes, the weighted residual methods, in
particular the theorem of virtual work or the principle of minimum potential energy, introduced in
Chapter 6, will be used. The nodal displacements at nodes are obtained through a nodal interpola-
tion of the field variable (displacement field) over the element. Such an interpolation has already
been used to derive the matrix relationship between forces and nodal displacements for the beam
element; see the example in Section 6.6.4, where the concepts of general and nodal approximations
were introduced briefly. In this chapter, they will be treated in more detail for a variety of finite
elements.

7.2 GENERAL AND NODAL APPROXIMATIONS

Given a thick wall surrounding a furnace such as the one represented in Figure 7.1. Five thermo-
couples are embedded in the wall to measure the temperature variation across. Now, suppose that
we want to estimate the temperature at any point in the wall. The easiest approach is to fit the data
points to a fourth-order polynomial such as

T(x) = α1 + α2 × x + α3 × x2 + α4 × x3 + α5 × x4 (7.1)

Having five data points, it is relatively easy to identify the five parameters αi of the polynomial.
Equation (7.1) can be rewritten as

T(x) = [
1 x x2 x3 x4

] ×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α1

α2

α3

α4

α5

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(7.2)

The coefficients αi are called the general parameters of the approximation, and they do not have
any physical meaning. However, they could be given one if we make the polynomial approximation

191
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Furnace

T1 T2 T3 T4 T5

X3 X4 X5

X
X1 X2

FIGURE 7.1 Thick wall with embedded thermocouples.

T(x) coincide with the exact solution at the five data points xi called nodes. It follows

T(x1) = α1 + α2 × x1 + α3 × x1
2 + α4 × x1

3 + α5 × x1
4 = T1

T(x2) = α1 + α2 × x2 + α3 × x2
2 + α4 × x2

3 + α5 × x2
4 = T2

T(x3) = α1 + α2 × x3 + α3 × x3
2 + α4 × x3

3 + α5 × x3
4 = T3

T(x4) = α1 + α2 × x4 + α3 × x4
2 + α4 × x4

3 + α5 × x4
4 = T4

T(x5) = α1 + α2 × x5 + α3 × x5
2 + α4 × x5

3 + α5 × x5
4 = T5

(7.3)

which can be rewritten in a matrix form as⎡
⎢⎢⎢⎢⎣

1 x1 x1
2 x1

3 x1
4

1 x2 x2
2 x2

3 x2
4

1 x3 x3
2 x3

3 x3
4

1 x4 x4
2 x1

3 x4
4

1 x5 x5
2 x5

3 x5
4

⎤
⎥⎥⎥⎥⎦ ×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α1

α2

α3

α4

α5

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T1

T2

T3

T4

T5

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(7.4)

or simply as

[A]{α} = {T} (7.5)

If the matrix [A] is regular, that is, all the points xi are distinct, then it is possible to write

{α} = [A]−1 × {T} (7.6)

Substituting for {α} using Equation (7.6), Equation (7.2) becomes

T(x) = [
1 x x2 x3 x4

] × [A]−1 × {T} (7.7)

which, after rearranging, becomes

T(x) = [
N1(x) N2(x) N3(x) N4(x) N5(x)

] ×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T1

T2

T3

T4

T5

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(7.8)
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or simply as

T(x) = [N] × {T} (7.9)

Since from Equation (7.3) T(xi) = Ti, it follows from (7.9) that

Ni(xj) =
{

1
0

if
i = j
i �= j

(7.10)

Contrarily to approximation (7.1), which is a general approximation, approximation (7.8) is called a
nodal approximation, since the general parameters {αi}, as the unknowns, are replaced by the values
{T} of the function at the nodes. The functions Ni(x) are called the shape functions and they satisfy
relation (7.10). In this particular case, they are also polynomial functions of order 4.

7.3 FINITE ELEMENT APPROXIMATION

Now, suppose that we have a large number of data points (say 100), and we would like to construct
a nodal approximation over the whole domain for a given function V(x). Such a trial function will
have 100 shape functions

V(x) = [
N1(x) N2(x) . . . . . . N100(x)

] ×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

V1

V2

...

...
V100

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(7.11)

and each one of them will be a polynomial of order 99. Polynomials of high order are known to be
very unstable as their derivatives change sign frequently. Not only are they cumbersome but also
very difficult to handle particularly from a computational point of view.

To avoid dealing with high-order polynomials, the alternative is to subdivide the domain into
subdomains called elements and construct the trial function over each element. This process is
called finite element approximation.

Given a function V(x) defined over a domain � : [x1, xn] as represented in Figure 7.2. Let us
construct an approximation for V(x) based on the principle of finite element approximation. It
involves dividing the domain into elements connected by nodes. The details of the discretization are
given as follows:

• Nodes: 1, 2, . . . , n − 1, n
• Nodal coordinates: x1, x2, . . . , xn−1, xn

V1

1 2 n – 1

Vn – 1 Vn

V2 V3

V(x)

x1 x2 x3 xn – 1 xn x

FIGURE 7.2 Finite element discretization.
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• Nodal values: V1, V2, . . . , Vn−1, Vn

• Elements: �1 : [x1, x2] , �2 : [x2, x3], . . . , �n−1 : [xn−1, xn]

First, let us start with the construction of a general approximation V(x)
(1)

for element 1. Since we
have only two points x1 and x2, we choose an approximation with two parameters α1 and α2:

V(x)
(1) = α1 + α2 × x (7.12)

Making the trial function coincide with V(x) at x1 and x2 yields

V(x1)
(1) = α1 + α2 × x1 = V1

V(x2)
(1) = α1 + α2 × x2 = V2

(7.13)

Solving for α1 and α2 yields

{
α1

α2

}
= 1

x2 − x1

×
[

x2 x1

−1 1

]
×

{
V1

V2

}
(7.14)

Substituting for {α} in Equation (7.12), the trial function becomes

V(x)
(1) = 1

x2 − x1

× [
1 x

] ×
[

x2 x1

−1 1

]
×

{
V1

V2

}
(7.15)

Multiplying and rearranging yields

V(x)
(1) =

[
x2 − x

x2 − x1

−x1 + x

x2 − x1

]
×

{
V1

V2

}
= N1(x)

(1) × V1 + N2(x)
(1) × V2 (7.16)

with

N1(x)
(1) = x2 − x

x2 − x1

N2(x)
(1) = −x1 + x

x2 − x1

(7.17)

In this case, the shape functions N1(x)(1) and N2(x)(1) are first-order polynomials in x because only
two points were used.

Now, if we are to construct trial functions V(x)
(2)

and V(x)
(n−1)

for elements 2 to n−1, the process
will be exactly the same; that is,

• Element 2: V(x)
(2) = N1(x)(2) × V2 + N2(x)(2) × V3

• . . .

• Element n − 1: V(x)
(n−1) = N1(x)(n−1) × Vn−1 + N2(x)(n−1) × Vn

The shape functions N1(x)(e) and N2(x)(e) have the same form over each element. The only thing
that differentiates them from element to element are the coordinates of the nodes associated to the
element. For example, for element 2, N1(x)(2) is obtained as

N1(x)
(2) = x3 − x

x3 − x2

(7.18)
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V(x)

1 2 n – 1

V1

Vn – 1 Vn
V2 V3

x1 x2 x3 xn – 1 xn x

FIGURE 7.3 Finite element approximation.

whereas for element n − 1 it is given as

N1(x)
(n−1) = xn − x

xn − xn−1

(7.19)

This property is very interesting since it is repetitive, therefore making the programming easy
on a digital computer.

Finally, the approximation over the global domain is obtained by adding the approximations over
the elements V(x) = ∑n−1

e=1 V
e
(x), as shown in Figure 7.3. Notice that the approximation is linear

over each element. It is also continuous at the nodes, that connect the elements.
The finite element nodal approximation can be extended to functions with many variables.

However, the geometrical definition of the elements and the construction of the shape functions
become more problematic as we will see in the following sections.

7.4 BASIC PRINCIPLES FOR THE CONSTRUCTION
OF TRIAL FUNCTIONS

7.4.1 COMPATIBILITY PRINCIPLE

The construction of the trial solution over a finite element must essentially satisfy the requirements
of the problem to solve and the geometry of the element. To illustrate this statement, consider the
bar and the beam problems shown respectively in Figure 7.4a and b. Under the effect of the applied
force P, every cross section A of the bar is subject to a constant stress σ = P/A. As a result, the
bar is under a constant strain ε = σ/E, where E represents the elastic modulus of the material.
In a one-dimensional context, the normal strain ε is actually given as a direct derivative of the
displacement u(x); that is, ε = du(x)/dx. Since the strain is constant all over the bar, it follows that

L

(a)

P U1 U2U(x)

L
W1 W2

W(x)
θ1 θ2

21

q

(b)

FIGURE 7.4 Geometrical illustration of the compatibility principle: (a) bar element, (b) beam element.
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the displacement u(x) is a linear function of x. As a result, it is possible to construct a trial function
u(x) for the displacement using a linear polynomial

u(x) = α1 + α2x (7.20)

The parameters α1 and α2 are identified using the two end nodal values U1 and U2. The bar problem
is classified as a C0 problem. The trial solution must be continuous and its derivative must exist.

Now let us consider the beam problem. Under the applied uniformly distributed loading, every
cross section of the beam is subject to a vertical displacement w(x) and a rotation θ(x). From the
engineering beam theory, the rotation θ(x) is obtained as the first derivative of the deflection w(x);
that is, θ(x) = dw(x)/dx. The slope θ(x) must be continuous, otherwise the beam would develop
“kinks” in its deflected shape. Therefore, if we are about to construct a trial function w(x) for
the deflection, then both the trial function and its first derivative must be continuous. The second
derivative, which represents the curvature of the beam, must exist. A suitable trial function that
satisfies these requirements would be

w(x) = α1 + α2 × x + α3 × x2 + α4 × x3 (7.21)

The four parameters α1, α2, α3, and α4 can be identified using the two end nodal values for the
deflection, w1, w2, and the two end values for the slope, θ1 and θ2. The beam problem is classified
as a C1 problem. The trial solution and its first derivative must be continuous, the second derivative
must exist.

In general, the compatibility principle can be formulated as follows:

• For a class C0 problem (continuity C0), the trial solution must be continuous across the
boundary of the elements but not necessarily its derivatives.

• For a class C1 problem (continuity C1), both the trial solution and its first-order derivatives
must be continuous across the boundary of the elements but not necessarily its second-order
derivatives.

• For a class Cn problem (continuity Cn), the trial solution and its (n − 1)th order derivatives
must be continuous across the boundary of the elements but not necessarily its nth order
derivatives.

7.4.2 COMPLETENESS PRINCIPLE

Again, consider the bar problem in Figure 7.4a. If the applied force P is different from zero, then
the displacement u(x) has a finite value different from zero at any point x belonging to the bar
except at x = 0, where a displacement equal to zero is imposed (boundary condition). If we choose
to discretize the bar with a linear two-nodded element, then the adopted trial function given in
Equation (7.20) will make a suitable choice since if the size of the elements shrinks to zero, that
is, limx→0 u(x) = α1, which is a constant representing the actual value of the displacement at that
point. However, if the trial function did not contain a constant term, limx→0 u(x) will be equal to zero,
which actually does not represent the real case. Furthermore, the constant term is necessary for the
trial function to be able to represent a rigid body motion. In this case, all points must have the same
displacement u(x) = α. In addition, we have du(x)/dx = α2, which represents the real case of the
bar with a constant deformation. This leads to the definition of the completeness principle, which
can be stated as follows. When the size of the element shrinks to zero, the trial function must be able
to represent:

• For a class C0 problem (continuity C0), a constant value of the exact function as well as
constant values of its first-order derivatives.
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• For a class C1 problem (continuity C1), a constant value of the exact function as well as
constant values of its first- and second-order derivatives.

• For a class Cn problem (continuity Cn), a constant value of the exact function as well as
constant values of its derivatives up to the nth order.

These conditions, as stated by the principles of compatibility and completeness, are sufficient
to ensure that the finite element solution converges to the exact solution. Luckily, nowadays we do
not need to observe these principles every time we solve a problem with the finite element method.
All the common elements that are in use in practice have been developed and checked according
to these principles, and more. . . Both their geometrical and analytical formulations are supplied in
element libraries in most finite element analysis software. However, it is never enough to reiterate
that solutions obtained with the finite element method are only approximations to the exact solution.
Therefore, it is worthwhile to understand these principles in order to assess the accuracy or make
a diagnosis of a finite element model.

7.5 TWO-DIMENSIONAL FINITE ELEMENT APPROXIMATION

7.5.1 PLANE LINEAR TRIANGULAR ELEMENT FOR C0 PROBLEMS

7.5.1.1 Shape Functions

Given a class C0 problem defined over a two-dimensional domain �. The unknown function for
which we propose to construct an approximation will be referred to as F(x, y). The function must
be continuous all over the domain but not necessarily its derivatives. However they should exist.
Given the complexity of the domain, such as the one represented in Figure 7.5, it is not possible to
construct the approximation over the whole domain. We will therefore proceed by constructing the
approximation over an element of simple geometry such as a triangle. In virtue of the principles of
compatibility and completeness, the trial function U(x, y) must have a constant term and constant
first-order derivatives in x and y. Therefore, we choose a trial function of the form

U(x, y) = a + bx + cy (7.22)

Notice that the trial function is linear and has three terms only. This is dictated by the geometry of
the element; it has three nodes, therefore three nodal values F1, F2, and F3, and its sides are linear.

y

x

Γ
Ω

F1

F3

F2

(x1, y1) (x2, y2)

(x3, y3)

FIGURE 7.5 Linear triangle.
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The trial function, expression (7.22), can be rewritten in the form

U(x, y) = [
1 x y

]
⎧⎨
⎩

a
b
c

⎫⎬
⎭ (7.23)

At the nodes 1(x1, y1), 2(x2, y2), and 3(x3, y3), we make the trial function U(x, y) coincide with the
unknown function F(x, y), which leads to

U(x1, y1) = a + bx1 + cy1 = F1 (7.24)

U(x2, y2) = a + bx2 + cy2 = F2 (7.25)

U(x3, y3) = a + bx3 + cy3 = F3 (7.26)

which may be again rewritten in matrix form as

⎡
⎣1 x1 y1

1 x2 y2

1 x3 y3

⎤
⎦

⎧⎨
⎩

a
b
c

⎫⎬
⎭ =

⎧⎨
⎩

F1

F2

F3

⎫⎬
⎭ (7.27)

If the matrix of the system (7.27) is not singular, that is, the three nodes of the triangle are distinct and
not aligned, the system can be solved for the constants a, b, and c, which are the general parameters
of the approximation

⎧⎨
⎩

a
b
c

⎫⎬
⎭ =

⎡
⎣1 x1 y1

1 x2 y2

1 x3 y3

⎤
⎦

−1 ⎧⎨
⎩

F1

F2

F3

⎫⎬
⎭ (7.28)

Substituting for a, b, and c in Equation (7.23) yields

U(x, y) = [
1 x y

] ⎡
⎣1 x1 y1

1 x2 y2

1 x3 y3

⎤
⎦

−1 ⎧⎨
⎩

F1

F2

F3

⎫⎬
⎭ (7.29)

which may be rewritten in the form

U(x, y) = [
N1(x, y) N2(x, y) N3(x, y)

]
⎧⎨
⎩

F1

F2

F3

⎫⎬
⎭ (7.30)

Expression (7.30) is a nodal approximation as opposed to (7.22), which is a general approximation.
The shape functions Ni(x, y), i = 1, 2, 3 are obtained as

N1(x, y) = 1

2A
((y3 − y2)(x2 − x) − (x3 − x2)(y2 − y)) (7.31)

N2(x, y) = 1

2A
((y1 − y3)(x3 − x) − (x1 − x3)(y3 − y)) (7.32)

N3(x, y) = 1

2A
((y2 − y1)(x1 − x) − (x2 − x1)(y1 − y)) (7.33)
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with

A = 1

2
det

⎡
⎣1 x1 y1

1 x2 y2

1 x3 y3

⎤
⎦ (7.34)

The shape functions may also be rewritten as

N1(x, y) = m11 + m12x + m13y

N2(x, y) = m21 + m22x + m23y

N3(x, y) = m31 + m32x + m33y

(7.35)

and in turn

m11 = x2y3 − x3y2

2A
m12 = y2 − y3

2A
m13 = x3 − x2

2A

m21 = x3y1 − x1y3

2A
m22 = y3 − y1

2A
m23 = x1 − x3

2A

m31 = x1y2 − x2y1

2A
m32 = y1 − y2

2A
m33 = x2 − x1

2A

(7.36)

The shape functions Ni(x, y) satisfy the following conditions:

Ni(xj, yj) =
{

1
0

if
i = j
i �= j

(7.37)

At node 1 N1(x1, y1) = 1 N2(x1, y1) = 0 N3(x1, y1) = 0

At node 2 N1(x2, y2) = 0 N2(x2, y2) = 1 N3(x2, y2) = 0

At node 3 N1(x3, y3) = 0 N2(x3, y3) = 0 N3(x3, y3) = 1

Furthermore, if the shape functions are evaluated at any point (x, y) belonging to the triangle, they
satisfy the relation

3∑
i=1

Ni(x, y) = 1 (7.38)

7.5.1.2 Reference Element

A different way of constructing the trial function U(x, y), Equation (7.22), is to construct it over a
reference element, then transform it to the parent element using a geometrical transformation τ as
represented in Figure 7.6. The geometrical transformation τ represented in Figure 7.6 defines the
coordinates (x, y) of each point of the parent element from the coordinates (ξ, η) of the corresponding
point of the reference element

τ : (ξ, η) �−→ (x, y) = τ(ξ, η) (7.39)

The transformation is chosen in such a way that

• Each point of the parent element corresponds to one and only one point of the reference
element, and inversely
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y

(x1, y1) (x2, y2)

(x3, y3)
η

(0,1)

(1,0) ξ

(x, y) = τ(ξ, η)

(0,0)
1 2

3

x

FIGURE 7.6 Geometrical transformation for a triangular element.

• The nodes of the parent element correspond to the nodes of the reference element and
inversely

• Each portion of the boundary of the parent element defined by the nodes attached to
it correspond to the portion of the boundary of the reference element defined by the
corresponding nodes attached to it

To define the geometrical transformation, we assume that the coordinates (x, y) of an arbitrary
point of the parent element are the unknown functions defined over the domain represented by the
reference element in its local coordinate system (ξ, η). Notice that both the variables x and y belong
to the C0 class of functions since they are continuous and their first derivatives are constant equal
to 1. Therefore, we start by constructing a general approximation for x in terms of ξ and η

x = α1 + α2ξ + α3η (7.40)

or in a matrix form as

x = [
1 ξ η

] ⎡
⎣α1

α2

α3

⎤
⎦ (7.41)

As it is now familiar, we will transform the general approximation, Equation (7.40), to a nodal
approximation by using the nodal values x1, x2, and x3 respectively at nodes 1, 2, and 3. Notice also
that the couple (ξ, η) takes on the values of (0, 0), (1, 0), and (0, 1) respectively at nodes 1, 2, and 3.
It follows

x1 = α1

x2 = α1 + α2

x3 = α1 + α3

(7.42)

which, when rewritten in a matrix form, yields
⎧⎨
⎩

x1

x2

x3

⎫⎬
⎭ =

⎡
⎣1 0 0

1 1 0
1 0 1

⎤
⎦

⎧⎨
⎩

α1

α2

α3

⎫⎬
⎭ (7.43)

or in a more compact form as

{X} = [A]{α} (7.44)
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The parameters αi can be easily obtained by solving the system (7.44). The inverse of the matrix [A]
is obtained as

[A]−1 =
⎡
⎣ 1 0 0

−1 1 0
−1 0 1

⎤
⎦ (7.45)

and the parameters αi as
⎧⎨
⎩

α1

α2

α3

⎫⎬
⎭ =

⎡
⎣ 1 0 0

−1 1 0
−1 0 1

⎤
⎦

⎧⎨
⎩

x1

x2

x3

⎫⎬
⎭ (7.46)

Substituting for the parameters αi in Equation (7.41) yields

x(ξ, η) = [
1 ξ η

]⎡
⎣ 1 0 0

−1 1 0
−1 0 1

⎤
⎦

⎧⎨
⎩

x1

x2

x3

⎫⎬
⎭ (7.47)

Expanding and rearranging Equation (7.47) yields

x(ξ, η) = τ1(ξ, η)x1 + τ2(ξ, η)x2 + τ3(ξ, η)x3 (7.48)

with

τ1(ξ, η) = 1 − ξ − η

τ2(ξ, η) = ξ

τ3(ξ, η) = η

(7.49)

Following exactly the same process for the variable y yields

y(ξ, η) = τ1(ξ, η)y1 + τ2(ξ, η)y2 + τ3(ξ, η)y3 (7.50)

Expressions (7.48) and (7.50) represent well and truly a linear geometrical transformation. This
can be easily checked. The x coordinate of the midpoint between node 1 and node 2 of the parent
element is given as x = (x1 + x2)/2. The (ξ, η) coordinates of the corresponding point on the
reference element are given as (1/2, 0). Substituting these values in expression (7.49) and then in
expressions (7.48) yields

x = (1 − 0.5 − 0)x1 + 0.5x2 + 0x3 = (x1 + x2)

2

The Jacobian of the transformation is given by

[J] =
⎡
⎢⎣

∂x

∂ξ

∂y

∂ξ
∂x

∂η

∂y

∂η

⎤
⎥⎦ =

⎡
⎢⎣

∑3
i=1

∂τi

∂ξ
xi

∑3
i=1

∂τi

∂ξ
yi

∑3
i=1

∂τi

∂η
xi

∑3
i=1

∂τi

∂η
yi

⎤
⎥⎦ (7.51)

After deriving and rearranging, the Jacobian is written in the form of a product of two matrices:

[J] =
[−1 1 0
−1 0 1

] ⎡
⎣x1 y1

x2 y2

x3 y3

⎤
⎦ (7.52)
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Since the geometrical transformation is well defined, we will construct the trial function U(x, y) for
an unknown function F(x, y) over the reference element. The unknown function, defined over the
parent element, is of class C0 with nodal values F1, F2, and F3. Since it is of the same class as the
coordinates x and y, we will reuse the same trial function; that is,

U(ξ, η) = α1 + α2ξ + α3η (7.53)

Following exactly the same procedure as previously, and replacing x1, x2, and x3 respectively with
the nodal values F1, F2, and F3, we end up with

U(ξ, η) = N1(ξ, η)F1 + N2(ξ, η)F2 + N3(ξ, η)F3 (7.54)

with

N1(ξ, η) = 1 − ξ − η

N2(ξ, η) = ξ

N3(ξ, η) = η

(7.55)

Remark: The shape functions Ni(ξ, η) are exactly the same as the functions τi(ξ, η) of the geometrical
transformation. This is due to the fact that the function U(ξ, η) is of the same class as the coordinates
x and y, and most importantly the geometrical nodes (the nodes used to define the geometry of the
element) are the same as the interpolation nodes (the nodes used to define the nodal values of the
unknown function). Such an element is called an isoparametric (same parameters) element since it
uses the same nodes to define both the geometry and interpolate the function.

7.5.1.3 Area Coordinates

Let us consider an arbitrary point O of the triangular element shown in Figure 7.7. The area
coordinates L1, L2, and L3 are defined as

L1 = AreaO23

Area123

(7.56)

3

O

1 2

FIGURE 7.7 Three-node triangular element with an arbitrary point O.
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L 2 = AreaO13

Area123

(7.57)

L3 = AreaO12

Area123

(7.58)

From these definitions, it follows that

L1 + L 2 + L3 = 1 (7.59)

It is also obvious that

• When point O coincides with node 1, L1 = 1, L 2 = 0, and L3 = 0.
• When point O coincides with node 2, L1 = 0, L 2 = 1, and L3 = 0.
• When point O coincides with node 3, L1 = 0, L 2 = 0, and L3 = 1.

In addition, moving point O in any direction will result in a linear variation of the area coordinates
L1, L2, and L3 in terms of x and y. Therefore, it should be clear to the reader that the area coordinates
L1, L2, and L3 are indeed the same as the shape functions N1, N2, and N3 given in Equation (7.31);
that is,

L1 = N1(x, y)

L2 = N2(x, y)

L3 = N3(x, y)

(7.60)

In the case of a reference triangular element as shown in Figure 7.8, the area coordinates are
expressed in terms of the coordinates (ξ, η) as follows:

L1 = N1(ξ, η) = 1 − ξ − η

L2 = N2(ξ, η) = ξ

L3 = N3(ξ, η) = η

(7.61)

7.5.2 LINEAR QUADRILATERAL ELEMENT FOR C0 PROBLEMS

7.5.2.1 Geometrical Transformation

In the quadrilateral family of elements, except for the square or the rectangle, it is impossible to
construct the shape functions directly in terms of x and y as we did for the triangle. The only
way to construct these functions is to use a reference element, which is a square of side 2 (units)
as represented in Figure 7.9. To define the geometrical transformation, we will assume that the
coordinates (x, y) of an arbitrary point of the parent element are the unknown functions defined over
the domain represented by the reference element in its local coordinate system (ξ, η). Notice that
both the variables x and y belong to the C0 class of functions since they are continuous and their first
derivatives are constant equal to 1. Therefore, we start by constructing a general approximation for
x in terms of ξ and η

x = α1 + α2ξ + α3η + α4ξη (7.62)
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(0,0)

(1,0)

(1,0)L3 = 0

L 2
=

0

L
1 = 0

1– ξ–η=0

ξ=
0

1 2 ξ

3

η

η = 0

FIGURE 7.8 Three-node triangular reference element.

3

η

(1,1)
(x4,y4)

(x1,y1)

(x2,y2)

(x3,y3)y

x

(x, y) = τ(ξ, η)(–1,+1)

(–1,–1) (+1,–1)

4

1 2

ξ

FIGURE 7.9 Geometrical transformation.

or in a matrix form as

x = [
1 ξ η ξη

]
⎡
⎢⎢⎣

α1

α2

α3

α4

⎤
⎥⎥⎦ (7.63)

Then, we will transform the general approximation, Equation (7.62), to a nodal approximation by
using the nodal values x1, x2, x3, and x4 respectively at nodes 1, 2, 3, and 4. Notice also that the
couple (ξ, η) takes on the values of (−1, −1), (+1, −1), (1, 1), and (−1, +1) respectively at nodes
1, 2, 3, and 4. It follows
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x1 = α1 − α2 − α3 + α4

x2 = α1 + α2 − α3 − α4

x3 = α1 + α2 + α3 + α4

x4 = α1 − α2 + α3 − α4

(7.64)

which, when rewritten in a matrix form, yields

⎧⎪⎪⎨
⎪⎪⎩

x1

x2

x3

x4

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎣

1 −1 −1 1
1 1 −1 −1
1 1 1 1
1 −1 1 −1

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

α1

α2

α3

α4

⎫⎪⎪⎬
⎪⎪⎭

(7.65)

or in a more compact form as

{X} = [A]{α} (7.66)

The parameters αi can be obtained easily by solving the system (7.65). It can be noticed that
the columns of the matrix [A] are actually orthogonal vectors of norm 4. Hence, the inverse of the
matrix [A] is obtained as

[A]−1 = 1

4
[A]T = 1

4

⎡
⎢⎢⎣

1 1 1 1
−1 1 1 −1
−1 −1 1 1
1 −1 1 −1

⎤
⎥⎥⎦ (7.67)

and the parameters αi as

⎧⎪⎪⎨
⎪⎪⎩

α1

α2

α3

α4

⎫⎪⎪⎬
⎪⎪⎭

= 1

4

⎡
⎢⎢⎣

1 1 1 1
−1 1 1 −1
−1 −1 1 1
1 −1 1 −1

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

x1

x2

x3

x4

⎫⎪⎪⎬
⎪⎪⎭

(7.68)

Substituting for the parameters αi in Equation (7.63) yields

x(ξ, η) = [
1 ξ η ξη

] 1

4

⎡
⎢⎢⎣

1 1 1 1
−1 1 1 −1
−1 −1 1 1
1 −1 1 −1

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

x1

x2

x3

x4

⎫⎪⎪⎬
⎪⎪⎭

(7.69)

Expanding and rearranging Equation (7.69) leads to

x(ξ, η) = τ1(ξ, η)x1 + τ2(ξ, η)x2 + τ3(ξ, η)x3 + τ4(ξ, η)x4 (7.70)

with

τ1(ξ, η) = 0.25(1 − ξ − η + ξη)

τ2(ξ, η) = 0.25(1 + ξ − η − ξη)

τ3(ξ, η) = 0.25(1 + ξ + η + ξη)

τ4(ξ, η) = 0.25(1 − ξ + η − ξη)

(7.71)
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Following exactly the same process for the variable y, we obtain

y(ξ, η) = τ1(ξ, η)y1 + τ2(ξ, η)y2 + τ3(ξ, η)y3 + τ4(ξ, η)y4 (7.72)

Expressions (7.70) and (7.72) represent well and truly a linear geometrical transformation. This
can be easily checked as follows. The center of the reference square is given by (ξ, η) = (0, 0).
Substituting these values in expression (7.71) and then in expressions (7.70) and (7.72) yields

x = 1

4
(x1 + x2 + x3 + x4)

y = 1

4
(y1 + y2 + y3 + y4)

which are the coordinates of the center of the parent element in the (x, y) coordinate system.
The Jacobian of the transformation is given by

[J] =
⎡
⎢⎣

∂x

∂ξ

∂y

∂ξ
∂x

∂η

∂y

∂η

⎤
⎥⎦ =

⎡
⎢⎣

∑4
i=1

∂τi

∂ξ
xi

∑4
i=1

∂τi

∂ξ
yi

∑4
i=1

∂τi

∂η
xi

∑4
i=1

∂τi

∂η
yi

⎤
⎥⎦ (7.73)

After deriving and rearranging, the Jacobian is written in the form of a product of two matrices

[J] = 1

4

[−(1 − η) (1 − η) (1 + η) −(1 + η)

−(1 − ξ) −(1 + ξ) (1 + ξ) (1 − ξ)

] ⎡
⎢⎢⎣

x1 y1

x2 y2

x3 y3

x4 y4

⎤
⎥⎥⎦ (7.74)

7.5.2.2 Construction of a Trial Function over a Linear Quadrilateral Element

Now, let us construct a trial function U(x, y) for an unknown function F(x, y) of class C0 with nodal
values F1, F2, F3, and F4 defined over the parent element. Since the geometrical transformation is
well defined, we will construct the trial function over the reference element. The function F(x, y) is
of the same class as the coordinates x and y, we will use the same trial function; that is,

U(ξ, η) = α1 + α2ξ + α3η + α4ξη (7.75)

Following exactly the same procedure as previously described, we end up with

U(ξ, η) = [
1 ξ η ξη

] 1

4

⎡
⎢⎢⎣

1 1 1 1
−1 1 1 −1
−1 −1 1 1
1 −1 1 −1

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

F1

F2

F3

F4

⎫⎪⎪⎬
⎪⎪⎭

(7.76)

which, after expanding and rearranging, becomes

U(ξ, η) = N1(ξ, η)F1 + N2(ξ, η)F2 + N3(ξ, η)F3 + N4(ξ, η)F4 (7.77)

with

N1(ξ, η) = 0.25(1 − ξ − η + ξη)

N2(ξ, η) = 0.25(1 + ξ − η − ξη)

N3(ξ, η) = 0.25(1 + ξ + η + ξη)

N4(ξ, η) = 0.25(1 − ξ + η − ξη)

(7.78)
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The bilinear quadrilateral element is also isoparametric since the shape functions are the same as the
functions τi(ξ, η) of the geometrical transformation.

7.6 SHAPE FUNCTIONS OF SOME CLASSICAL ELEMENTS FOR C0 PROBLEMS

7.6.1 ONE-DIMENSIONAL ELEMENTS

7.6.1.1 Two-Nodded Linear Element (Figure 7.10)

{
N1(ξ)

N2(ξ)

}
=

⎧⎪⎨
⎪⎩

1

2
(1 − ξ)

1

2
(1 + ξ)

⎫⎪⎬
⎪⎭ (7.79)

7.6.1.2 Three-Nodded Quadratic Element

⎧⎨
⎩

N1(ξ)

N2(ξ)

N3(ξ)

⎫⎬
⎭ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2
ξ(1 − ξ)

(1 − ξ2)

1

2
ξ(1 + ξ)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(7.80)

7.6.2 TWO-DIMENSIONAL ELEMENTS

7.6.2.1 Four-Nodded Bilinear Quadrilateral (Figure 7.11)

⎧⎪⎪⎨
⎪⎪⎩

N1(ξ, η)

N2(ξ, η)

N3(ξ, η)

N4(ξ, η)

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

0.25(1 − ξ − η + ξη)

0.25(1 + ξ − η − ξη)

0.25(1 + ξ + η + ξη)

0.25(1 − ξ + η − ξη)

⎫⎪⎪⎬
⎪⎪⎭

(7.81)

Two-nodded linear Three-nodded quadratic

–1 0 +1 ξ –1 0 +1 ξ

FIGURE 7.10 One-dimensional elements.

4

1
1

2
2

3

8

7 6 5

4

3

η

η
Four-nodded bilinear Eight-nodded quadratic

ξ ξ

FIGURE 7.11 Two-dimensional quadrilateral elements.
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Three-nodded linear Six-nodded quadratic
η η

3

46

5

1 2 ξ 1 2 3
ξ

FIGURE 7.12 Two-dimensional triangular elements.

7.6.2.2 Eight-Nodded Quadratic Quadrilateral

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N1(ξ, η)

N2(ξ, η)

N3(ξ, η)

N4(ξ, η)

N5(ξ, η)

N6(ξ, η)

N7(ξ, η)

N8(ξ, η)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.25(1 − ξ)(1 − η)(1 + ξ + η)

0.50(1 − ξ2)(1 − η)

−0.25(1 + ξ)(1 − η)(1 − ξ + η)

0.50(1 + ξ)(1 − η2)

−0.25(1 + ξ)(1 + η)(1 − ξ − η)

0.50(1 − ξ2)(1 + η)

−0.25(1 − ξ)(1 + η)(1 + ξ − η)

0.50(1 − ξ)(1 − η2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.82)

7.6.2.3 Three-Nodded Linear Triangle (Figure 7.12)

⎧⎨
⎩

N1(ξ, η)

N2(ξ, η)

N3(ξ, η)

⎫⎬
⎭ =

⎧⎨
⎩

1 − ξ − η

ξ

η

⎫⎬
⎭ (7.83)

7.6.2.4 Six-Nodded Quadratic Triangle

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

N1(ξ, η)

N2(ξ, η)

N3(ξ, η)

N4(ξ, η)

N5(ξ, η)

N6(ξ, η)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−(1 − ξ − η)(1 − 2(1 − ξ − η))

4ξ(1 − ξ − η)

−ξ(1 − 2ξ)

4ξη

−η(1 − 2η)

4η(1 − ξ − η)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(7.84)

7.6.3 THREE-DIMENSIONAL ELEMENTS

7.6.3.1 Four-Nodded Linear Tetrahedra

⎧⎪⎪⎨
⎪⎪⎩

N1(ξ, η, ζ)

N2(ξ, η, ζ)

N3(ξ, η, ζ)

N4(ξ, η, ζ)

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

1 − ξ − η − ζ

ξ

−η

ζ

⎫⎪⎪⎬
⎪⎪⎭

(7.85)
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Four-nodded linear Ten-nodded quadratic
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FIGURE 7.13 Three-dimensional tetrahedric elements.

7.6.3.2 Ten-Nodded Quadratic Tetrahedra (Figure 7.13)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N1(ξ, η, ζ)

N2(ξ, η, ζ)

N3(ξ, η, ζ)

N4(ξ, η, ζ)

N5(ξ, η, ζ)

N6(ξ, η, ζ)

N7(ξ, η, ζ)

N8(ξ, η, ζ)

N9(ξ, η, ζ)

N10(ξ, η, ζ)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(1 − ξ − η − ζ)(1 − 2(1 − ξ − η − ζ))

4ξ(1 − ξ − η − ζ)

−ξ(1 − 2ξ)

4ξη

−η(1 − 2η)

4η(1 − ξ − η − ζ)

4ζ(1 − ξ − η − ζ)

4ξζ

4ηζ

−ζ(1 − 2ζ)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.86)

7.6.3.3 Eight-Nodded Linear Brick Element

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N1(ξ, η, ζ)

N2(ξ, η, ζ)

N3(ξ, η, ζ)

N4(ξ, η, ζ)

N5(ξ, η, ζ)

N6(ξ, η, ζ)

N7(ξ, η, ζ)

N8(ξ, η, ζ)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= 1

8

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1 − ξ)(1 − η)(1 − ζ)

(1 + ξ)(1 − η)(1 − ζ)

(1 + ξ)(1 + η)(1 − ζ)

(1 − ξ)(1 + η)(1 − ζ)

(1 − ξ)(1 − η)(1 + ζ)

(1 + ξ)(1 − η)(1 + ζ)

(1 + ξ)(1 + η)(1 + ζ)

(1 − ξ)(1 + η)(1 + ζ)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7.87)
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7.6.3.4 Twenty-Nodded Quadratic Brick Element (Figure 7.14)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N1(ξ, η, ζ)

N2(ξ, η, ζ)

N3(ξ, η, ζ)

N4(ξ, η, ζ)

N5(ξ, η, ζ)

N6(ξ, η, ζ)

N7(ξ, η, ζ)

N8(ξ, η, ζ)

N9(ξ, η, ζ)

N10(ξ, η, ζ)

N11(ξ, η, ζ)

N12(ξ, η, ζ)

N13(ξ, η, ζ)

N14(ξ, η, ζ)

N15(ξ, η, ζ)

N16(ξ, η, ζ)

N17(ξ, η, ζ)

N18(ξ, η, ζ)

N19(ξ, η, ζ)

N20(ξ, η, ζ)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
8
(1 − ξ)(1 − η)(1 − ζ)(−2 − ξ − η − ζ)

1

4
(1 − ξ2)(1 − η)(1 − ζ)

1

8
(1 + ξ)(1 − η)(1 − ζ)(−2 + ξ − η − ζ)

1

4
(1 + ξ)(1 − η2)(1 − ζ)

1

8
(1 + ξ)(1 + η)(1 − ζ)(−2 + ξ + η − ζ)

1

4
(1 − ξ2)(1 + η)(1 − ζ)

1

8
(1 − ξ)(1 + η)(1 − ζ)(−2 − ξ + η − ζ)

1

4
(1 − ξ)(1 − η2)(1 − ζ)

1

4
(1 − ξ)(1 − η)(1 − ζ2)

1

4
(1 + ξ)(1 − η)(1 − ζ2)

1

4
(1 + ξ)(1 + η)(1 − ζ2)

1

4
(1 − ξ)(1 + η)(1 − ζ2)

1

8
(1 − ξ)(1 − η)(1 + ζ)(−2 − ξ − η + ζ)

1

4
(1 − ξ2)(1 − η)(1 + ζ)

1

8
(1 + ξ)(1 − η)(1 + ζ)(−2 + ξ − η + ζ)
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1
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1

4
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1
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1

4
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FIGURE 7.14 Three-dimensional brick elements.
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8 Numerical Integration

8.1 INTRODUCTION

In Section 6.6.4, analytical integration was used to integrate the expression of the theorem of virtual
work during the evaluation of the stiffness matrix of the beam element. That was relatively easy
because a beam element is unidimensional. However, when the number of elements is large, and/or
their geometrical shape is general, as is the case in most finite element applications, the use of
analytical integration is quite cumbersome and ill-suited for computer coding. The alternative is to
use numerical integration.

There exist many numerical methods for evaluating a definite integral. Simpson’s rule, Newton–
Cotes, and Gauss quadrature are examples of such methods. The basic idea of numerical integration
is to replace the continuous integral with a series of finite sums:

b�
a

f (x) dx =
n∑

i=1

Ai f (xi) + error (8.1)

The parameters Ai are called the weights of the integration.
In finite element application, Gauss quadrature, also called the Gauss–Legendre method, is the

most widely used as it is the most precise.

8.2 GAUSS QUADRATURE

To begin the explanation of Gauss quadrature, we consider a one-dimensional problem without
reference to the finite element method. Given a polynomial function of degree m ≤ 2r − 1, we
assume that we can evaluate exactly the following integral with the method of Gauss quadrature
on the interval [−1, +1]:

+1�
−1

f (ξ)dξ =
r∑

i=1

Wi f (ξi) (8.2)

Based on our assumption, it follows that Equation (8.2) is verified for any polynomial function
of the form

f (ξ) = α1 + α2ξ + α3ξ
2 + · · · + α2rξ

2r−1 (8.3)

To obtain the weights Wi and the abscissa ξi, which are the unknowns, we substitute Equation (8.3)
for f (ξ) in Equation (8.2), which yields

α1

+1�
−1

dξ + α2

+1�
−1

ξdξ + · · · + α2r

+1�
−1

ξ2r−1dξ = α1(W1 + W2 + · · · + Wr)

+α2(W1ξ1 + W2ξ2 + · · · + Wrξr) + · · · α2r(W1ξ
2r−1
1 + W2ξ

2r−1
2 + · · · + Wrξ

2r−1
r ) (8.4)

211
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For Equation (8.4) to be identically satisfied for all αi, we must have the following equalities:

+1�
−1

ξαdξ = 2

α + 1
=

r∑
i=1

Wi f (ξα

i ) α = 0, 2, 4, . . . , 2r (8.5)

+1�
−1

ξαdξ = 0 =
r∑

i=1

Wi f (ξα

i ) α = 1, 3, 5, . . . , 2r − 1 (8.6)

which gives

2 = W1 + W2 + · · · + Wr

0 = W1ξ1 + W2ξ2 + · · · + Wrξr

2/3 = W1ξ
2
1 + W2ξ

2
2 + · · · + Wrξ

2
r (8.7)

. . .

0 = W1ξ
2r−1
1 + W2ξ

2r−1
2 + · · · + Wrξ

2r−1
r

The system (8.7) is linear in Wi but nonlinear in ξi, and determines the parameters of (8.2) under the
conditions

Wi > 0

−1 ≤ ξ ≤ +1

}
i = 1, 2, . . . , r (8.8)

However, there is no need to solve the system (8.7) to obtain the abscissa ξi and the weights Wi. The
abscissa ξi are the roots of Legendre polynomials of order r, which are defined, for k = 1, 2, . . . , r, as

P0(ξ) = 1

P1(ξ) = ξ

. . . = . . . (8.9)

Pk(ξ) = 2k − 1

k
ξ Pk−1(ξ) − k − 1

k
ξ Pk−2(ξ)

and the weights Wi are obtained as

Wi = 2(1 − ξ2
i )

(r(Pr−1(ξi)))2
(8.10)

Example 1: Weights and abscissa for r = 2

Find the abscissas ξi and the weights Wi for r = 2.
The Legendre polynomials up to order 2 are written as

P0(ξ) = 1

P1(ξ) = ξ

P2(ξ) = 3
2

ξ2 − 1
2
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TABLE 8.1
Abscissa and Weights for Gauss Quadrature

r ξ W

1 0.000000 000000 000000 2.000000 000000 000000

2 0.577350 269189 635764 1.000000 000000 000000

3 0.774596 669241 483377 0.555555 555555 555555
0.000000 000000 000000 0.888888 888888 888888

4 0.861136 371594 052575 0.347854 845137 453857
0.339981 043584 856264 0.652145 154862 546142

5 0.906179 845938 663992 0.236926 885056 189087
0.538469 310105 683091 0.478628 670499 366468
0.000000 000000 000000 0.568888 888888 888888

The roots of P2(ξ) = 0 are given as

ξi = ± 1√
3

The weights W1 and W2 can be obtained from the system (8.7) as

2 = W1 + W2

0 = − 1√
3

W1 + 1√
3

W2

or directly from Equation (8.10). In both cases, we obtain

W1 = W2 = 1

Table 8.1 gives the abscissa ξi and the weights Wi for r = 1, . . . , 5
The abscissae are symmetrical with respect to 0, and the corresponding weights are equal; for

example for r = 5, we get

ξ1 = −0.906179845938663992 W1 = 0.538469310105683091

ξ2 = −0.478628670499366468 W2 = 0.568888888888888888

ξ3 = 0.000000000000000000 W2 = 0.236926885056189087

ξ4 = 0.478628670499366468 W4 = 0.568888888888888888

ξ5 = 0.906179845938663992 W5 = 0.538469310105683091

Example 2: Integral Evaluation

Evaluate the integral
� +1

−1 (ξ2 + sin(ξ/2))dξ using three Gauss points, r = 3.
Using Table 8.1, the abscissa and weights for three Gauss points are

ξ1 = −0.774596669241483377 W1 = 0.555555555555555555

ξ2 = 0.000000000000000000 W2 = 0.888888888888888888

ξ3 = 0.774596669241483377 W3 = 0.555555555555555555
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Using only six significant digits for the abscissa and the weights, the integral becomes

ξ1, W1 : [(−0.774596)2 + sin(−0.774596/2)]0.555555 +
ξ2, W2 : [0.0000002 + sin(0.000000/2)]0.888888 +
ξ3, W3 : [0.7745962 + sin(0.774596/2)]0.555555 = 0.666664

Compared to the analytical solution, we have

Iexact =
[

ξ3

3
− 2 cos(ξ/2)

]+1

−1

= 0.666666

With only six significant figures, the integration is exact up to five digits after the decimal point.

8.2.1 Integration over an Arbitrary Interval [a, b]
Up to now, the method of Gauss quadrature has been presented only for evaluating integrals in
the domain [−1, +1]. What about if the interval of integration is of the general form such as [a, b]?
That is, evaluating an integral of the form

b�
a

f (x) dx (8.11)

In this case, we transform the interval [−1, +1] to the interval [a, b] through a change of variable. In
other words, we define a linear transformation between [−1, +1] and [a, b]. The analytical expression
of the linear transformation between the two intervals is given by

x = b − a

2
ξ + b + a

2
(8.12)

Differentiating yields

dx = b − a

2
dξ (8.13)

Substituting Equations (8.13) and (8.12) in Equation (8.11) yields

b�
a

f (x) dx = b − a

2

+1�
−1

f (x(ξ)) dξ = b − a

2

r∑
i=1

Wi f (x(ξi)) (8.14)

Example 3: Evaluation of a General Integral

Evaluate the integral
� 7

3
1

1.1+x dx with two (r = 2) and three (r = 3) Gauss points.
First, we operate the following variable change given by Equation (8.12):

x = 7 − 3
2

ξ + 7 + 3
2

= 2ξ + 5

a. Two Gauss points r = 2
Using Table 8.1, we obtain the abscissa and the weights for two Gauss points:

ξ1 = −0.577350269189635764 W1 = 1.000000000000000000

ξ2 = 0.577350269189635764 W2 = 1.000000000000000000

© 2013 by Taylor & Francis Group, LLC



Numerical Integration 215

Using only six significant digits, the integral becomes

ξ1, W1 :
7 − 3

2

[
1

1.1 + (2(−0.577350) + 5)

]
1.000000 +

ξ2, W2 :
7 − 3

2

[
1

1.1 +(2(+0.577350) + 5)

]
1.000000 = 0.680107

b. Three Gauss points I = 3
The abscissa and weights for three Gauss points are

ξ1 = −0.774596669241483377 W1 = 0.555555555555555555

ξ2 = 0.000000000000000000 W2 = 0.888888888888888888

ξ3 = 0.774596669241483377 W3 = 0.555555555555555555

Using only six significant digits, the integral becomes

ξ1, W1 :
7 − 3

2

[
1

1.1 + (2(−0.774596) + 5)

]
0.555555 +

ξ2, W2 :
7 − 3

2

[
1

1.1 + (2(+0.000000) + 5)

]
0.888888 +

ξ3, W3 :
7 − 3

2

[
1

1.1 + (2(+0.774596) + 5)

]
0.555555 = 0.68085

Compared to the analytical solution, we have

Iexact = [
ln(1.1 + x)

]7

3
= 6.80877

8.2.2 Integration in Two and Three Dimensions

Integrating in two and three dimensions consists of using a single integral in each dimension.
For instance, the evaluation of

� +1

−1

� +1

−1
f (ξ, η) dξ dη is carried out as follows:

+1�
−1

+1�
−1

f (ξ, η) dξ dη =
r1∑

i=1

r2∑
j=1

WiWj f (ξi, ηj)) (8.15)

Notice that different number of Gauss points can be used in each direction. The method integrates
exactly the product of a polynome of degree 2r1 − 1 in ξ and a polynome of degree 2r2 − 1 in η.

In three dimensions, Equation (8.15) becomes

+1�
−1

+1�
−1

+1�
−1

f (ξ, η, ζ) dξ dη dζ =
r1∑

i=1

r2∑
j=1

r3∑
k=1

WiWjWk f (ξi, ηj, ζj) (8.16)

Example 4: Evaluation of a Double Integral

Using Gauss quadrature, evaluate the following integral using three Gauss points in each direction:

I =
π�
0

3�
0

(x2 − x) sin y dx dy
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In this case, it is necessary to operate two variable changes to evaluate numerically this integral.
The variable changes are

In x-direction: x = 3
2

ξ + 3
2

In y-direction: y = π

2
η + π

2

The integral is written as

I = 3π

4

+1�
−1

+1�
−1

(x(ξ)2 − x(ξ)) sin y(η) dξ dη

and can be replaced by the following series:

I = 3π

4

3∑
i=1

3∑
j=1

WiWj(x(ξi)
2 − x(ξi)) sin y(ηj)

Using Table 8.1 for r = 3, we have

x(ξ1) = 0.3381 y(η1) = 0.3541 W1 = 0.5555

x(ξ2) = 1.5000 y(η2) = 1.5708 W2 = 0.8888

x(ξ3) = 2.6619 y(η3) = 2.7875 W3 = 0.5555

Developing the series yields

i = 1 j = 1 : I = 3π

4

[
0.5555((0.3381)2 − 0.3381)0.5555 sin(0.3541)

j = 2 : +0.5555((0.3381)2 − 0.3381)0.8888 sin(1.5708)

j = 3 : +0.5555((0.3381)2 − 0.3381)0.5555 sin(2.7875)
]

i = 2 j = 1 : +3π

4

[
0.8888((1.5000)2 − 1.5000)0.5555 sin(0.3541)

j = 2 : +0.8888((1.5000)2 − 1.5000)0.8888 sin(1.5708)

j = 3 : +0.8888((1.5000)2 − 1.5000)0.5555 sin(2.7875)
]

i = 3 j = 1 : +3π

4

[
0.5555((2.6619)2 − 2.6619)0.5555 sin(0.3541)

j = 2 : +0.5555((2.6619)2 − 2.6619)0.8888 sin(1.5708)

j = 3 : +0.5555((2.6619)2 − 2.6619)0.5555 sin(2.7875)
]

= 9.0047

The analytical solution is obtained as

I =
[

x3

3
− x2

2

]3

0

[
− cos(y)

]π

0
= 9

8.3 INTEGRATION OVER A REFERENCE ELEMENT

As we have seen in Section 8.2, Gauss quadrature evaluates single integrals between [−1, +1],
double integrals over a square of side 2, and triple integrals over a cube of side 2. For instance, to
evaluate an integral over a quadrilateral, it is necessary to transform the quadrilateral into a reference

© 2013 by Taylor & Francis Group, LLC



Numerical Integration 217

element over which the integration can be carried out. For example, the evaluation of the integral�
A

f (x, y)dA over a quadrilateral area is carried out as follows:

• Since the bilinear quadrilateral is isoparametric, we write the coordinates x and y in terms
of the reference coordinates ξ and η as

x(ξ, η) = N1(ξ, η)x1 + N2(ξ, η)x2 + N3(ξ, η)x3 + N4(ξ, η)x4

y(ξ, η) = N1(ξ, η)y1 + N2(ξ, η)y2 + N3(ξ, η)y3 + N4(ξ, η)y4

the shape functions Ni(ξ, η) are as given by Equations (7.78)
• Use Equation (7.74) of the Jacobian of the transformation to express the elementary area

dA = dxdy in terms of the corresponding elementary area dξdη of the reference element

dxdy = det[J] dξ dη

• Construct a nodal approximation for the function using its nodal values

f (ξ, η) =
n∑

i=1

Ni(ξ, η)fi

• Finally, the integral becomes

I =
+1�

−1

+1�
−1

(
n∑

i=1

Ni(ξ, η)fi

)
det[J] dξ dη (8.17)

8.4 INTEGRATION OVER A TRIANGULAR ELEMENT

The main reason for introducing the area coordinates in Section 7.5.1.3 was to allow the evaluation
of simple integrals that arise in the finite element method when the linear triangular element is used.

8.4.1 Simple Formulas

The following simple formulas can be used to evaluate integrals over the side or the area of a
triangular element:

• Integrals over length

�
l

Lα

i Lβ

j dl = α!β!
(α + β + 1)! lij (8.18)

where dl represents an element of length between nodes i and j
• Integrals over area

�
A

Lα

i Lβ

j Lγ

k dA = α!β!γ!
(α + β + γ + 2)!2A (8.19)

where dA represents an element of area.

If the shape functions, Ni(x, y), of the triangular element are defined directly in terms of the
coordinates x and y, then they can be directly substituted for the area coordinates Li(x, y).
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8.4.2 Numerical Integration over a Triangular Element

The simple formulas given by expressions (8.18) and (8.19) are only useful when the linear triangular
element is used since the shape functions Ni(x, y) are the same as the area coordinates Li(x, y).
However, when higher order triangular elements are used, the simple formulas described earlier
become quite cumbersome and numerical integration over a reference triangular element is the
most indicated. Expression (8.20) gives the formulas for integrating over a triangular reference
element:

I =
+1�
0

1−ξ�
0

f (ξ, η) dη dξ =
r∑

i=1

Wi f (ξi, ηi) (8.20)

These formulas integrate exactly monomes ξαηβ such that α + β ≤ m. They are referred to as
Hammer formulas. The abscissa ξi, ηi, and the weights Wi are different from those used by Gauss
quadrature. Table 8.2 from [1,2] gives the abscissa and weights for integration over a triangular
reference element. Notice that there are two sets of abscissa and weights for m = 2. Figure 8.1
shows the positions of the sampling points for orders 1, 2, and 3.

TABLE 8.2
Abscissae and Weights for a Triangle

Order m Number of Points r ξ η W

1 1 0.333333333333 0.333333333333 0.5

2 3 0.5 0.5 0.166666666666
0 0.5 0.166666666666
0.5 0 0.166666666666

2 3 0.166666666666 0.166666666666 0.166666666666
0.666666666666 0.166666666666 0.166666666666
0.166666666666 0.666666666666 0.166666666666

3 4 0.333333333333 0.333333333333 −0.28125
0.2 0.2 0.260416666666
0.6 0.2 0.260416666666
0.2 0.6 0.260416666666

4 6 0.44594849092 0.44594849092 0.111690794839
0.10810301817 0.44594849092 0.111690794839
0.44594849092 0.10810301817 0.111690794839
0.09157621351 0.09157621351 0.054975871827
0.81684757289 0.09157621351 0.054975871827
0.09157621351 0.81684757289 0.054975871827

5 7 0.33333333333 0.33333333333 0.1125
0.470142064105 0.470142064105 0.066197076394
0.05971587179 0.470142064105 0.066197076394
0.470142064105 0.05971587179 0.066197076394
0.101286507324 0.101286507324 0.708802923606
0.898713492676 0.101286507324 0.708802923606
0.101286507324 0.898713492676 0.708802923606
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η η

ηη

ξ ξm = 1 m = 2

21

3

2 3

2

1

1
1

3

4

m = 2 ξ m = 3 ξ

FIGURE 8.1 Positions of the sampling points for a triangle: Orders 1, 2, and 3.

8.5 SOLVED PROBLEMS

8.5.1 PROBLEM 8.1

Use Gauss quadrature to evaluate the second moment of area of the quarter annulus shown in
Figure 8.2 with respect to the axis x.

Solution

To evaluate the integral Ixx = �
y2dA, we introduce a double change of variables. First, we express

x and y in terms of the polar coordinates r and θ, then we express the polar coordinates in terms of
the reference coordinates ξ and η as depicted in Figure 8.3.

y (mm)

R 2
= 70

R1= 40

x (mm)

FIGURE 8.2 Gauss quadrature over an arbitrary area.
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y (mm)

(1,1)(–1,1)

(–1,–1) (1,–1)
x (mm)

r

ξ

ξ

η

η

θ

FIGURE 8.3 Double change of variables.

x = r cos θ

y = r sin θ

θ = π

4
η + π

4

r = R2 − R1

2
ξ + R2 + R1

2

In terms of polar coordinates, the infinitesimal area dA = dxdy is written as

dA = r dr dθ

Substituting in the expression of the second moment of area, the latter can be written as

Ixx =
π/2�
0

R2�
R1

(r sin θ)2r dr dθ

Such an integral can be easily evaluated analytically; the result is obtained as

Ixx =
R2�

R1

r3dr
π/2�
0

(sin θ)2dθ =
[

r4

4

]R2

R1

[
θ

2
− 1

4
sin(2θ)

]π/2

0

= π(R4
2 − R4

1)

16

Using numerical values, R1 = 40 mm and R2 = 70 mm, we obtain

Ixx = 4,211,700 mm4

In terms of the reference coordinates ξ and η, the integral is written as

Ixx = π

4

(
R2 − R1

2

) +1�
−1

+1�
−1

(
R2 − R1

2
ξ + R2 + R1

2

)3 (
sin

(π

4
η + π

4

))2

dξ dη

Introducing the method of Gauss quadrature, we obtain

Ixx = π

4

(
R2 − R1

2

) n1∑
i=1

n2∑
j=1

(
R2 − R1

2
ξi + R2 + R1

2

)3 (
sin

(π

4
ηj + π

4

))2

WiWj
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Using two Gauss points in the direction of ξ, three in the direction of η, and introducing the same
numerical values, R1 = 40 mm and R2 = 70 mm, we obtain

ξ1 = −0.577350 r1 = 15(−0.577350) + 55 = 46.3397 W1 = 1

ξ2 = 0.577350 r2 = 15(0.577350) + 55 = 63.6603 W2 = 1

η1 = −0.774596 θ1 = (π/4)(−0.774596) + (π/4) = 0.1770 W1 = 0.55555

η2 = 0.0000000 θ2 = (π/4)(0.000000) + (π/4) = 0.7854 W2 = 0.88888

η3 = 0.774596 θ3 = (π/4)(0.774596) + (π/4) = 1.3938 W3 = 0.55555

After substitution, the sum equation becomes

Ixx = 11.7810
[
(46.33973)(sin(0.1770))2 × 1 × 0.55555 + (46.33973)(sin(0.7854))2

× 1 × 0.88888 + (46.33973)(sin(1.3938))2 × 1 × 0.55555

+ (63.66033)(sin(0.1770))2 × 1 × 0.55555 + (63.66033)(sin(0.7854))2

× 1 × 0.88888 + (63.66033)(sin(1.3938))2 × 1 × 0.55555
]

= 4,211,700 mm4

8.5.2 PROBLEM 8.2

Use coarse and fine meshes of respectively 2 and 8 quadratic isoparametric 8-nodded elements
as shown in Figures 8.4 and 8.5 to compute the second moment of area Ixx of the annulus in Worked
Example 8.1.

Solution

The second moment of the area of the annulus is obtained as the sum of the second moments
of area of the two elements; that is,

Ixx = I(1)

xx + I(2)

xx

y (mm)

1

2

12
13

8

5
4

3

2

7

11

10

1 6 9 x (mm)

FIGURE 8.4 Coarse mesh of two 8-nodded elements.
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FIGURE 8.5 Eight elements finite element approximation with two 8-nodded elements.

The second moment of area of elements 1 and 2 are obtained respectively as

I(1)

xx =
�
A1

y2dx dy

I(2)

xx =
�
A2

y2dx dy

To be able to evaluate the aforementioned integrals, we introduce the reference coordinates ξ and η.
For each element, the y ordinate is approximated in terms of the nodal coordinates of the element as

y = N1(ξ, η)y1 + N2(ξ, η)y2 + · · · + N8(ξ, η)y8

The infinitesimal element of area dxdy is obtained as

dxdy = [J(ξ, η)]dξdη =

⎡
⎢⎢⎣

∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

⎤
⎥⎥⎦ dξdη

After substitution, the aforementioned integrals become

I(1)

xx =
+1�

−1

+1�
−1

(
8∑

k=1

Nk(ξ, η)y(1)

k

)2

det[J(1)(ξ, η)] dξ dη

I(2)

xx =
+1�

−1

+1�
−1

(
8∑

k=1

Nk(ξ, η)y(2)

k

)2

det[J(2)(ξ, η)] dξ dη
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Notice that the only difference between the two equations are the coordinates of the nodes.
Introducing Gauss quadrature, the integrals become

I(1)

xx =
ngp∑
i=1

ngp∑
j=1

(
8∑

k=1

Nk(ξi, ηj)y
(1)

k

)2

WiWjdet[J(1)(ξi, ηj)]

I(2)

xx =
ngp∑
i=1

ngp∑
j=1

(
8∑

k=1

Nk(ξi, ηj)y
(2)

k

)2

WiWjdet[J(2)(ξi, ηj)]

The aforementioned sums involve matrix multiplication, and their evaluation by hand is very
tedious. Therefore, it is better and quicker to evaluate them with a MATLAB� code. In addition, to
choose the required number of Gauss points ngp, we need to investigate the order of the polynomials
involved in the aforementioned equations. The functions Nk(ξ, η) are of degree 2 in ξ and η. When
they are squared they become of order 4. The determinant of the Jacobian matrix is linear in both
ξ and η. Therefore, the order of the polynomials involved is 5. As such, we need three Gauss points
in each direction, ngp = 3.

The code named IXX.m, listed next, begins with the input data. It uses either a mesh of two or
eight elements. The input data, which consist of the number of nodes nnd, their coordinates stored
in the matrix geom(nnd, 2), the number of elements nel, the number of nodes per element nne,
and the connectivity matrix connec(nel, nne), are given respectively in the scripts Two_Q8.m and
Eight_Q8.m listed next.

IXX.m

% Evaluation of the second moment of area of a geometrical domain
% Using finite element approximation with an 8 Nodes
% isoparametric element elements.
%
clc
clear
%
global geom connec nel nne nnd RI RE
%
RI = 40; % Internal radius
RE = 70; % External radius
%
Eight_Q8 % Load input for fine mesh
%
% Number of Gauss points
%
ngp = 3 % The polynomials involved are of degree 5
%
samp = gauss(ngp) % Gauss abscissae and weights
%
%
Ixx = 0.; % Initialize the second moment of area to zero
%
for k=1:nel

coord = coord_q8(k,nne, geom, connec); % Retrieve the coordinates of
% the nodes of element k

X = coord(:,1); % X coordinates of element k
Y = coord(:,2) % Y coordinates of element k
X = coord(:,1); % X coordinates of element k
Y = coord(:,2) % Y coordinates of element k

%
for i=1:ngp

xi = samp(i,1);
WI = samp(i,2);
for j =1:ngp
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eta = samp(j,1);
WJ = samp(j,2);
[der,fun] = fmquad(samp, i,j); % Form the vector of the shape functions

% and the matrix of their derivatives
JAC = der*coord; % Evaluate the Jacobian
DET =det(JAC) % Evaluate determinant of Jacobian matrix
Ixx =Ixx+ (dot(fun,Y))^2*WI*WJ*DET;
end

end
end
Ixx

Two_Q8

% Input module Two_Q8.m
% Two elements mesh
%
global geom connec nel nne nnd RI RE
nnd = 13 % Number of nodes
%
% The matrix geom contains the x and y coordinates of the nodes
%
geom = ...
[RI 0.; ... % node 1
RI*cos(pi/8) RI*sin(pi/8); ... % node 2
RI*cos(pi/4) RI*sin(pi/4); ... % node 3
RI*cos(3*pi/8) RI*sin(3*pi/8); ... % node 4
RI*cos(pi/2) RI*sin(pi/2); ... % node 5
(RI+RE)/2 0.; ... % node 6
((RI+RE)/2)*cos(pi/4) ((RI+RE)/2)*sin(pi/4);... % node 7
((RI+RE)/2)*cos(pi/2) ((RI+RE)/2)*sin(pi/2);... % node 8
RE 0.; ... % node 9
RE*cos(pi/8) RE*sin(pi/8); ... % node 10
RE*cos(pi/4) RE*sin(pi/4); ... % node 11
RE*cos(3*pi/8) RE*sin(3*pi/8); ... % node 12
RE*cos(pi/2) RE*sin(pi/2)] % node 13

nel = 2 % Number of elements
nne = 8 % Number of nodes per element
%
% The matrix connec contains the connectivity of the elements
%
connec = [1 6 9 10 11 7 3 2; ... % Element 1

3 7 11 12 13 8 5 4] % Element 2
%
% End of input module Two_Q8.m

Eight_Q8.m

% Eight elements mesh
%
global geom connec nel nne nnd RI RE
nnd = 37 % Number of nodes
%
% The matrix geom contains the x and y coordinates of the nodes
%
geom = ...
[RI 0.; ... % node 1
RI+(RE-RI)/4 0.; ... % node 2
RI+(RE-RI)/2 0.; ... % node 3
RI+3*(RE-RI)/4 0.; ... % node 4
RE 0.; ... % node 5
RI*cos(pi/16) RI*sin(pi/16); ... % node 6
(RI+(RE-RI)/2)*cos(pi/16) (RI+(RE-RI)/2)*sin(pi/16); ... % node 7
RE*cos(pi/16) RE*sin(pi/16); ... % node 8
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RI*cos(pi/8) RI*sin(pi/8); ... % node 9
(RI+(RE-RI)/4)*cos(pi/8) (RI+(RE-RI)/4)*sin(pi/8); ... % node 10
(RI+(RE-RI)/2)*cos(pi/8) (RI+(RE-RI)/2)*sin(pi/8); ... % node 11
(RI+3*(RE-RI)/4)*cos(pi/8) (RI+3*(RE-RI)/4)*sin(pi/8); ... % node 12
RE*cos(pi/8) RE*sin(pi/8); ... % node 13
RI*cos(3*pi/16) RI*sin(3*pi/16); ... % node 14
(RI+(RE-RI)/2)*cos(3*pi/16) (RI+(RE-RI)/2)*sin(3*pi/16); ... % node 15
RE*cos(3*pi/16) RE*sin(3*pi/16); ... % node 16
RI*cos(pi/4) RI*sin(pi/4); ... % node 17
(RI+(RE-RI)/4)*cos(pi/4) (RI+(RE-RI)/4)*sin(pi/4); ... % node 18
(RI+(RE-RI)/2)*cos(pi/4) (RI+(RE-RI)/2)*sin(pi/4); ... % node 19
(RI+3*(RE-RI)/4)*cos(pi/4) (RI+3*(RE-RI)/4)*sin(pi/4); ... % node 20
RE*cos(pi/4) RE*sin(pi/4); ... % node 21
RI*cos(5*pi/16) RI*sin(5*pi/16); ... % node 22
(RI+(RE-RI)/2)*cos(5*pi/16) (RI+(RE-RI)/2)*sin(5*pi/16); ... % node 23
RE*cos(5*pi/16) RE*sin(5*pi/16); ... % node 24
RI*cos(6*pi/16) RI*sin(6*pi/16); ... % node 25
(RI+(RE-RI)/4)*cos(6*pi/16) (RI+(RE-RI)/4)*sin(6*pi/16); ... % node 26
(RI+(RE-RI)/2)*cos(6*pi/16) (RI+(RE-RI)/2)*sin(6*pi/16); ... % node 27
(RI+3*(RE-RI)/4)*cos(6*pi/16) (RI+3*(RE-RI)/4)*sin(6*pi/16); ... % node 28
RE*cos(6*pi/16) RE*sin(6*pi/16); ... % node 29
RI*cos(7*pi/16) RI*sin(7*pi/16); ... % node 30
(RI+(RE-RI)/2)*cos(7*pi/16) (RI+(RE-RI)/2)*sin(7*pi/16); ... % node 31
RE*cos(7*pi/16) RE*sin(7*pi/16); ... % node 32
RI*cos(pi/2) RI*sin(pi/2); ... % node 33
(RI+(RE-RI)/4)*cos(pi/2) (RI+(RE-RI)/4)*sin(pi/2); ... % node 34
(RI+(RE-RI)/2)*cos(pi/2) (RI+(RE-RI)/2)*sin(pi/2); ... % node 35
(RI+3*(RE-RI)/4)*cos(pi/2) (RI+3*(RE-RI)/4)*sin(pi/2); ... % node 36
RE*cos(pi/2) RE*sin(pi/2)] % node 37
%
nel = 8 % Number of elements
nne = 8 % Number of nodes per element
%
% The matrix connec contains the connectivity of the elements
%
connec = [1 2 3 7 11 10 9 6; ... % Element 1

3 4 5 8 13 12 11 7; ... % Element 2
9 10 11 15 19 18 17 14; ... % Element 3
11 12 13 16 21 20 19 15; ... % Element 4
17 18 19 23 27 26 25 22; ... % Element 5
19 20 21 24 29 28 27 23; ... % Element 6
25 26 27 31 35 34 33 30; ... % Element 7
27 28 29 32 37 36 35 31];... % Element 8

%
% End script Eight_Q8.m

Next, we provide the abscissae and weights necessary to perform a gauss quadrature. These
are given in the script gauss.m, listed in Appendix A, which is a function that returns the matrix
samp(ngp, 2). The first column contains the abscissa and the second column the weights.

For each element, we retrieve the coordinates of its nodes using the script coord_q8.m also listed
in Appendix A.

The double sum is evaluated using three Gauss points ngp = 3. The shape functions Ni(ξi, ηj),
given in the vector fun(nne), as well as their derivatives, returned in the matrix der(2, nne), are all
evaluated at the Gauss points using the script fmquad.m listed in Appendix A.

The Jacobian is simply evaluated as jac = der ∗ coord. The second moment of area is obtained
as a sum of all the terms Ixx = Ixx + (dot(fun, Y))2 ∗ WI ∗ WJ ∗ DET with Ixx being previously
initialized to zero.

After execution of the code, the second moment of area obtained with the coarse mesh is

Ixx = 4,205,104 mm4
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FIGURE 8.6 Estimation of rainfall using finite element approximation.

This is not quite the result anticipated. Indeed, it is not possible to approximate a circle with a
quadratic polynomial. Now let us increase the number of elements by using the fine mesh of eight
elements. The new result is

Ixx = 4,211,281 mm4

It can be seen that the precision of the second moment of area has greatly improved. Obviously if
we keep refining the mesh, the computed value will converge to the exact one.

8.5.3 PROBLEM 8.3

Six rain gages are placed in a triangular shape, as shown in Figure 8.6. Estimate the total rainfall on
the region as well as its area by using

• Four linear triangular elements
• One quadratic triangular element

The coordinates of the rain gauges and the precipitations recorded are as given in Table 8.3.

Solution

If Q(x, y) is the unknown function for rainfall, then the total quantity of rainfall over the area A is
given as

QT =
�
A

Q(x, y) dA

To be able to estimate QT , we need first to construct a trial function for the unknown function Q(x, y).
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TABLE 8.3
Coordinates of Rain Gages and Precipitations

Gage x (km) y (km) Precipitation (mm)

1 15 15 20
2 62.5 25 15
3 110 35 10
4 87.5 70 20
5 65 105 30
6 40 60 25

Four linear triangular elements

The total area A is divided into four triangular elements having nodes 1−2−6, 2−3−4, 2−4−6,
and 6 − 4 − 5. We will use the same nodal approximation as a trial function for all the elements. For
an arbitrary linear triangular element with nodes i − j − k, we have

Q(x, y) = Ni(x, y)Qi + Nj(x, y)Qj + Nk(x, y)Qk

The shape functions Ni(x, y), Nj(x, y), and Nk(x, y) are given by expressions (7.31). The quantity of
rainfall over the element is given as

Qe =
�
Ae

Q(x, y) dA = Q1

�
Ae

N1(x, y) dA + Q2

�
Ae

N2(x, y) dA + Q3

�
Ae

N3(x, y) dA

Using the formulas for integration over a triangle, expression (8.19), the previous expression becomes

Qe = (Q1 + Q2 + Q3)
Ae

3

The area Ae is given in terms of the nodal coordinates by Equation (7.34).
The aforementioned computations can be easily coded in a MATLAB code, which we will name

precipitation_T3.m listed next.

% PROGRAM precipitation_T3.M
%
% This program estimates the quantity of rainfall over
% an area discretized with linear triangular elements
%
nel = 4 % Total number of elements
nnd = 6 % Total number of nodes
nne = 3 % Number of nodes per element
%
% Coordinates of the rain gauges (nodes)in km
%
geom = [15. 15. ; ... % Node 1

62.5 25. ; ... % Node 2
110. 35. ; ... % Node 3
87.5 70. ; ... % Node 4
65. 105. ; ... % Node 5
40. 60.] ; % Node 6

%
% Precipitations recorded by the rain gauges
%
q = [20.; 15.; 10.; 20.; 30.; 25.] ;
%
% Connectivity
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%
connec = [1 2 6; ... % Element 1

2 3 4; ... % Element 2
2 4 6; ... % Element 3
6 4 5]; % Element 4

%
AT = 0. ; % Initialize total area to zero
QT = 0. ; % Initialize total rainfall to zero
%
for i=1:nel
%
% for each element retrieve the x and y coordinates of its nodes
%

xi = geom(connec(i,1),1); yi = geom(connec(i,1),2);
xj = geom(connec(i,2),1); yj = geom(connec(i,2),2);
xk = geom(connec(i,3),1); yk = geom(connec(i,3),2);

%
% Retrieve the precipitations recorded at its nodes
%

qi = q(connec(i,1)); qj =q(connec(i,2)); qk =q(connec(i,3));
%
% calculate its area
%

A = (0.5)*det([1 xi yi;...
1 xj yj;...
1 xk yk]);

AT = AT + A;
%
% Estimate quantity of rain over its area
%

Q = (qi+qj+qk)*A/3;
QT = QT + Q;

end
%
AT
QT

After execution of the code, the area and the total quantity of rainfall are obtained respectively as

A = 3,775 km2

Q = 75,500 mm km2

One quadratic triangular element

In this case, we will construct the trial function on a triangular reference element with local
coordinates ξ and η:

Q(x, y) =
6∑

i=1

Ni(ξ, η)Qi

The shape functions Ni(ξ, η), i = 1 to 6 are given by Equation (7.84). The element is isoparametric,
and the coordinates x and y of any point of the parent element are given as

x =
6∑

i=1

Ni(ξ, η)xi

y =
6∑

i=1

Ni(ξ, η)yi
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The total area of the element is given as

A =
�
A

dA =
+1�
0

1−ξ�
0

det(J(ξ, η)) dξ dη =
npt∑
k

Wkdet(J(ξk, ηk))

and total rainfall over the element is obtained as

Qe =
�
A

Q(x, y) dA

=
+1�
o

1−ξ�
0

(
6∑

i=1

Ni(ξ, η)Qi

)
det[J(ξ, η)] dξ dη

=
npt∑
k

Wk

(
6∑

i=1

Ni(ξk, ηk)Qi

)
det[J(ξk, ηk)]

The number of integration points npt, the weights Wk, and the abscissae ξk and ηk are given in
Table 8.2. The matrix [J] is the Jacobian and is given as

[J] =

⎡
⎢⎢⎣

∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

∑6
i=1

∂Ni

∂ξ
xi

∑6
i=1

∂Ni

∂ξ
yi

∑6
i=1

∂Ni

∂η
xi

∑6
i=1

∂Ni

∂η
yi

⎤
⎥⎥⎦

The partial derivatives ∂Ni

∂ξ
and ∂Ni

∂η
are obtained by deriving the shape functions Ni(ξ, η), i = 1 to 6

with respect to ξ and η.
The calculations in this example are quite elaborate as they involve numerical integration, matrix

multiplication, and evaluation of determinants. Therefore, it is better to write a MATLAB code
named precipitation_T6.m containing the functions hammer.m and fmT6_quad.m both listed
in Appendix A. The function hammer.m returns the weight and abscissa listed in Table 8.2. The
function fmT6_quad.m returns the shape functions stored in the vector fun and their derivatives with
respect to ξ and η stored in the array der. The Jacobian is simply evaluated as jac = der ∗ coord.
The array coord contains the coordinates x and y of the nodes of the element.

precipitation_T6.m
% PROGRAM precipitation_T6.m
%
% This program estimates the quantity of rainfall over
% an area discretized with linear triangular elements
%
clear
clc
nel = 1 % Total number of elements
nnd = 6 % Total number of nodes
nne = 6 % Number of nodes per element
npt=4;
samp=hammer(npt);
%
% Coordinates of the rain gauges (nodes)in km
%
geom = [15. 15. ; ... % Node 1

62.5 25. ; ... % Node 2
110. 35. ; ... % Node 3
87.5 70. ; ... % Node 4
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65. 105. ; ... % Node 5
40. 60.] ; % Node 6

%
% Precipitations recorded by the rain gauges
%
q = [20.; 15.; 10.; 20.; 30.; 25.] ;
%
% Connectivity
%
connec = [1 2 3 4 5 6]; ... % Element 1
%
AT = 0. ; % Initialize total area to zero
QT = 0. ; % Initialize total rainfall to zero
%
for i=1:nel
%
% for each element retrieve the vector qe containing the
% precipitations at its nodes as well as the matrix coord
% containing the x and y coordinates of the nodes
%

for k=1: nne
qe(k) = q(connec(i,k));
for j=1:2
coord(k,j)=geom(connec(i,k),j);
end

end
%

for ig = 1:npt
WI = samp(ig,3);
[der,fun] = fmT6_quad(samp, ig);
JAC = der*coord;
DET = det(JAC);

%
% calculate its area
%

AT = AT+ WI*DET;
%
% Estimate quantity of rain over its area
%

QT = QT + WI*dot(fun,qe)*DET;
end

end
%
AT QT

After execution of the code, we obtain exactly the same results as with the linear triangular elements;
that is,

A = 3,775 km2

Q = 75,500 mm km2
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9 Plane Problems

9.1 INTRODUCTION

By now, it should have become clear to the reader that in any finite element analysis we are not
analyzing the actual physical problem, but a mathematical model of it. As a result, we introduce
some simplifications, and hence some modeling errors. In reality all solids are three-dimensional.
Fortunately, for many problems which are of practical interest, some simplifying assumptions can be
made regarding the stress or strain distributions. For example, in Chapters 2 through 4 dealing with
skeletal structures, line-type elements were used because of the predominance of the longitudinal
stress. In Section 5.4.4, we have also seen that when the loading and/or geometry permit it, a solid
can be analyzed as a plane stress or plane strain problem. There are also other simplifications for
solids that posses a symmetry of revolution in both geometry and loading, and for flat solids loaded
perpendicular to their plane. These will be dealt respectively in Chapters 10 and 11. However,
unlike skeletal structures, whose discretization into an assembly of elements is relatively easy, the
connecting joints naturally constitute the nodes, such an intuitive approach does not exist for a two-
or three-dimensional continuum. There are no joints to be used as nodes or cleavage lines to be used
as elements’ edges. Hence, the discretization becomes a process that requires an understanding of
the physical problem at hand. It should be also added that the more physical details one tries to
capture, the more complex the model becomes. In particular, the user has to decide on the choice of
element type and size. These depend on the physical make-up of the body, the loading, and on how
close to the actual behavior the user wants the results to be. He/she also has to decide whether the
model can be simplified? And how could the results be checked? There are, of course, no definite
answers to these questions. In this chapter dealing with plane problems, and in Chapters 10 and 11,
we will formulate the finite element method, and in the process attempt to answer some of these
questions. The user, however, is reminded that only practice makes perfect.

9.2 FINITE ELEMENT FORMULATION FOR PLANE PROBLEMS

The stress–strain relationships for a plane problem, see Section 5.4.4, are given for plane stress as

⎧⎪⎨
⎪⎩

σxx

σyy

τxy

⎫⎪⎬
⎪⎭ = E

1 − ν2

⎡
⎢⎢⎢⎣

1 ν 0

ν 1 0

0 0
(1 − ν)

2

⎤
⎥⎥⎥⎦

⎧⎪⎨
⎪⎩

εxx

εyy

γxz

⎫⎪⎬
⎪⎭ (9.1)

and for plane strain as

⎧⎪⎨
⎪⎩

σxx

σyy

τxy

⎫⎪⎬
⎪⎭ = E

(1 + ν)(1 − 2ν)

⎡
⎢⎢⎢⎣

1 − ν −ν 0

−ν 1 − ν 0

0 0
(1 − 2ν)

2

⎤
⎥⎥⎥⎦

⎧⎪⎨
⎪⎩

εxx

εyy

γxy

⎫⎪⎬
⎪⎭ (9.2)

Whether it is a state of plane stress or plane strain, a material point can only move in the direc-
tions x and y. Therefore, the two displacement variables that play a role are u(x, y) and v(x, y).

231
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The infinitesimal strain displacements relations for both theories are the same (refer to Section 5.3.6),
and they are given as

εxx = ∂u

∂x
(9.3)

εyy = ∂v

∂y
(9.4)

γxy = ∂u

∂y
+ ∂v

∂x
(9.5)

These relations can be written in a matrix form as

⎧⎪⎨
⎪⎩

εxx

εyy

γxy

⎫⎪⎬
⎪⎭ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂x
0

0
∂

∂y

∂

∂y

∂

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

{
u

v

}
(9.6)

or in a more compact form as

{ε} = [L]U (9.7)

where [L] is a linear differential operator.
The only unknowns in Equations (9.1) through (9.7) are actually the displacements u and v. If

these are known, then the strains and the stresses can be obtained in a unique fashion, provided of
course that the compatibility equations (5.89) are satisfied.

Let us consider a finite element approximation for the unknown functions u and v. For an element
having n nodes, the unknown displacements are interpolated using nodal approximations as

u = N1u1 + N2u2 + · · · + Nnun (9.8)

v = N1v1 + N2v2 + · · · + Nnvn (9.9)

which, when written in a matrix form, yields

{
u

v

}
=

[
N1 0 | N2 0 | . . . | Nn 0

0 N1 | 0 N2 | . . . | 0 Nn

]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1

v1

u2

v2

...

un

vn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9.10)

or simply as

{U} = [N]a (9.11)
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with {a} = {u1, v1, u2, v2, . . . , un, vn} being the vector of nodal displacements. The number and the
form of the shape functions depend on the element used.

Substituting for {U} using Equation (9.10), the strain displacement Equation (9.6) become

{ε} = [B]{a} (9.12)

with

[B] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂N1

∂x
0 | ∂N2

∂x
0 | . . . | ∂Nn

∂x
0

0
∂N1

∂y
| 0

∂N2

∂y
| . . . | 0

∂Nn

∂y

∂N1

∂y

∂N1

∂x
| ∂N2

∂y

∂N2

∂x
| . . . | ∂Nn

∂y

∂Nn

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(9.13)

The matrix [B] is called the strain matrix; it relates the nodal displacements to the strains. It is formed
by the partial derivatives of the shape functions Ni(x, y).

To derive the matrix relationship between the loads acting on the element and its nodal displace-
ments, we will make use of the principle of virtual work, which has already been introduced in
Section 6.4. For a single finite element, the principle of virtual work is written as

�
Ve

δ{ε}T{σ} dV =
�
Ve

δ{U}T{b} dV +
�
�e

δ{U}T{t} d� +
∑

i

δ{U}T
({x}={x}){P}i (9.14)

where
{ε} represents the strain vector
{σ} is the stress vector
{U} is the displacements vector
{b} is the body forces vector
{t} is the traction forces vector
{P}i is the vector of concentrated forces applied at {x} = {x}
dv is an element of volume
d� is an element of the boundary of the element on which the traction forces {t} are applied

The variation in the strains {δε} and in the displacements {δU} can now be respectively expressed as

{δε} = δ([B]{a}) = [B]{δa} (9.15)

{δU} = δ([N]{a}) = [N]{δa} (9.16)

Substituting for {ε} using Equation (9.12), the stress–strain relationship is written as

{σ} = [D]{ε} = [D][B]{a} (9.17)

Substituting for δ{U}, δ{ε}, and {σ} in Equation (9.14), the principle of virtual work is written as
�
Ve

δ{a}T[B]T[D][B]{a} dV =
�
Ve

δ{a}T[N]T{b} dV +
�
�e

δ{a}T[N]T{t} d� +
∑

i

δ{a}T[N({x}={x})]T{P}i

(9.18)

Note that for a plane element the element of volume dv and the element of boundary d� can be
written respectively as dv = tdA and d� = tdl, where t represents the thickness of the element, dA
an infinitesimal element of its area, and dl an infinitesimal element of its boundary.
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Since δ{a} is a variation in the nodal values, therefore independent of the spatial coordinates, it
can be taken out of the integral signs and completely eliminated from the earlier equation, which
becomes[�

Ae

[B]T[D][B]tdA

]
{a} =

�
Ae

[N]T{b}tdA +
�
Le

[N]T{t}tdl +
∑

i

[N({x}={x})]T{P}i (9.19)

Equation (9.19) can be rewritten in a matrix form as

[Ke]{a} = fe (9.20)

[Ke] =
[�

Ae

[B]T[D][B]tdA

]
(9.21)

is the element stiffness matrix, and

{ fe} =
�
Ae

[N]T{b}tdA +
�
Le

[N]T{t}tdl +
∑

i

[N({x}={x})]T{P}i

is the element force vector.

9.3 SPATIAL DISCRETIZATION

The first step in any finite element analysis is the partition of the domain into a suitable mesh of ele-
ments. There is of course no unique way in achieving a mesh. However, the foregoing considerations
must be addressed.

• Two distinct elements can only have in common nodes situated along their common
boundary if the latter exists. This condition excludes any overlapping between two or
more elements. Figure 9.1 shows one of the most common discretization errors involving
overlapping between elements.

• The meshed domain should resemble as much as possible the original domain. Holes
between elements as shown in Figure 9.2 are not permitted unless the holes physically exist
in the original domain.

• Elongated or highly skewed elements as shown in Figure 9.3 should be avoided as they
result in decreased accuracy.

• When meshing domains with curved boundaries, a geometrical discretization error is
unavoidable. However, it can be reduced by refining the mesh or using higher-order
elements, as shown in Figure 9.4.

Overlapping area

Before deformation After deformation

FIGURE 9.1 Discretization error involving overlapping.

© 2013 by Taylor & Francis Group, LLC



Plane Problems 235

FIGURE 9.2 Discretization error involving holes between elements.

Elongated element Near triangular

Highly skewed

Near triangular

FIGURE 9.3 Plane elements with shape distortions.

FIGURE 9.4 Geometrical discretization error.

9.4 CONSTANT STRAIN TRIANGLE

The linear triangular element shown in Figure 9.5 is perhaps the earliest finite element. It has three
nodes, and each node has two degrees of freedom. Its shape functions have already been obtained in
Chapter 7, and they are given as

N1(x, y) = m11 + m12x + m13y

N2(x, y) = m21 + m22x + m23y (9.22)

N3(x, y) = m31 + m32x + m33y
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y
v3

v

u

u3

u2

v2

v1

u1

x

FIGURE 9.5 Linear triangular element.

with

m11 = x2y3 − x3y2

2A
m12 = y2 − y3

2A
m13 = x3 − x2

2A

m21 = x3y1 − x1y3

2A
m22 = y3 − y1

2A
m23 = x1 − x3

2A
(9.23)

m31 = x1y2 − x2y1

2A
m32 = y1 − y2

2A
m33 = x2 − x1

2A

and

A = 1

2
det

⎡
⎢⎣

1 x1 y1

1 x2 y2

1 x3 y3

⎤
⎥⎦ (9.24)

9.4.1 DISPLACEMENT FIELD

The displacement field over the element is approximated as

u = N1u1 + N2u2 + N3u3 (9.25)

v = N1v1 + N2v2 + N3v3 (9.26)

or in a matrix form as

{
u

v

}
=

[
N1 0 | N2 0 | N3 0

0 N1 | 0 N2 | 0 N3

]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1

v1

u2

v2

u3

v3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9.27)
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or more compactly as

{U} = [N]{a} (9.28)

9.4.2 STRAIN MATRIX

Substituting for the displacements u and v in Equation (9.6) using Equation (9.27), the strain vector
is obtained as

{ε} = [B]{a} (9.29)

with

[B] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂N1

∂x
0 | ∂N2

∂x
0 | ∂N3

∂x
0

0
∂N1

∂y
| 0

∂N2

∂y
| 0

∂N3

∂y

∂N1

∂y

∂N1

∂x
| ∂N2

∂y

∂N2

∂x
| ∂N3

∂y

∂N3

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(9.30)

Substituting Equations (9.22) and (9.23) in (9.30), the matrix [B] becomes

[B] =
⎡
⎢⎣

m12 0 | m22 0 | m32 0

0 m13 | 0 m23 | 0 m33

m13 m12 | m23 m22 | m33 m32

⎤
⎥⎦ (9.31)

Remark: The matrix [B] is independent of the Cartesian coordinates x and y. It is a function of the
nodal coordinates only, and it is constant all over the element. It follows therefore that the strain
vector is constant over the element. That is the reason why the element is termed “constant strain
triangle.”

9.4.3 STIFFNESS MATRIX

The stiffness matrix of the element is given by Equation (9.21). Since both the matrices [B] and [D]
are constant, the stiffness matrix becomes

[Ke] = [B]T[D][B]tAe (9.32)

where Ae represents the area of the element and is given by Equation (9.24).

9.4.4 ELEMENT FORCE VECTOR

The element force vector is given by Equation (9.22).
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9.4.4.1 Body Forces

Considering that the body forces {b} are due to gravity, the first term of Equation (9.22) is evaluated as

�
Ae

[N]T{b}t dA = t
�
Ae

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1 0

0 N1

N2 0

0 N2

N3 0

0 N3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

{
0

−ρg

}
dA = t

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

− �
Ae

N1ρg dA

0

− �
Ae

N2ρg dA

0

− �
Ae

N3ρg dA

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.33)

The individual integrals over the area involving the shape functions are evaluated using the integration
formulas over a triangle presented in Equations (8.18) and (8.19). Applying these formulas, the
individual integrals are evaluated as follows:

�
Ae

N1ρg dA = ρg
�
Ae

N1
1 N0

2 N0
3 dA = ρg

1!0!0!
(1 + 0 + 0 + 2)!2Ae = ρg

Ae

3
(9.34)

�
Ae

N2ρg dA = ρg
�
Ae

N0
1 N1

2 N0
3 dA = ρg

0!1!0!
(0 + 1 + 0 + 2)!2Ae = ρg

Ae

3
(9.35)

�
Ae

N3ρg dA = ρg
�
Ae

N0
1 N0

2 N1
3 dA = ρg

0!0!1!
(0 + 0 + 1 + 2)!2Ae = ρg

Ae

3
(9.36)

Substituting back in Equation (9.33), we obtain

�
Ae

[N]T{b}t dA = − t

3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

ρgAe

0

ρgAe

0

ρgAe

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9.37)

It can be noticed that the self-weight of the element is shared equally between the nodes.

9.4.4.2 Traction Forces

Consider the element shown in Figure 9.6 subject to a uniformly distributed load of magnitude q
normal to the side 2–3 and at an angle θ with the global axis x. The vector of the traction forces can
therefore be written as {t} = {−q cos θ, −q sin θ}T .
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FIGURE 9.6 Element nodal forces.

The second term of Equation (9.22) is evaluated as

�
Le

[N]T{t}t dl =
�

L2−3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

N2 0

0 N2

N3 0

0 N3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

{−q cos θ

−q sin θ

}
t dl = t

�
L2−3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

0

−N2q cos θ

−N2q sin θ

−N3q cos θ

−N3q sin θ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

dl (9.38)

Notice that N1 = 0 on side 2–3.
The integrals over the length are evaluated using the integration formula over a side of a triangle

given by Equation (8.18). Applying this formula, the aforementioned integral becomes

�
Le

[N]T{t}t dl = t

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

0

−q cos θL2−3/2

−q sin θL2−3/2

−q cos θL2−3/2

−q sin θL2−3/2

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9.39)

It can be noticed that the nodes 2 and 3 share the applied load qL2−3 equally between them.

9.4.4.3 Concentrated Forces

Finally, considering the element shown in Figure 9.6 subject to a horizontal force H and a vertical
force P applied respectively at nodes 1 and 2, the third term of Equation (9.22) is evaluated
as follows:
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∑
i

[N({x}={x})]T{P}i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1 = 1 0

0 N1 = 1

0 0

0 0

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

{
H

0

}
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

N2 = 1 0

0 N2 = 1

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

{
0

−P

}
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

0

H

0

0

−P

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9.40)

Notice that N1 = 1 when evaluated at node 1 and equal to zero when evaluated at nodes 2 and 3.
In a similar fashion, N2 = 1 when evaluated at node 2 and equal to zero when evaluated at nodes 1
and 3. N3 = 0 when evaluated at nodes 1 and 2 where the loads are applied.

9.4.5 COMPUTER CODES USING THE CONSTANT STRAIN TRIANGLE

Writing a finite element code using any type of element follows exactly the same principles as those
we used in Chapters 2 through 4 for writing the codes Truss.m, Beam.m, and Frame.m. Therefore, in
the development of the codes CST_PLANE_STRESS.m and CST_PLANE_STRESS_MESH.m
to follow, we will not only use the same style, but we will also borrow some functions from the
codes Truss.m, Beam.m, and Frame.m.

Let us consider the cantilever beam shown in Figure 9.7, which has an exact analytical solution.
The vertical displacement of any point is given as

v = νPxy2

2EI
+ Px3

6EI
− PL2x

2EI
+ PL3

3EI
(9.41)

where I represents the second moment of area of the section with respect to the axis z. Note that in
the axis y is oriented from top to the bottom. As a result, Equation (9.41) yields positive values for
the vertical displacement v.

To carry out a finite element analysis of the cantilever, it is necessary to introduce some numerical
values for the dimensions, the elastic constants and the loading. Let us consider C = 10 mm, L = 60
mm, t = 5 mm for the geometrical properties, a Young’s modulus of 200000 MPa and a Poisson’s
ratio of 0.3 for the material properties, as well as a concentrated force P of 1000 N. We will use
24 elements to discretize the domain as shown in Figure 9.8. The nodes numbered 19, 20, and 21
represent the fixed end.

P

L

X
C

C

t Y

FIGURE 9.7 Analysis of a cantilever beam in plane stress.
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FIGURE 9.8 Finite element discretization with linear triangular elements.

9.4.5.1 Data Preparation

To read the data, we will use the M-file CST_COARSE_MESH_DATA.m listed next:

FILE: CST_COARSE_MESH_DATA.m
% File: CST_COARSE_MESH_DATA.m
%
% The following variables are declared as global in order
% to be used by all the functions (M-files) constituting
% the program
%
%
global nnd nel nne nodof eldof n
global geom connec dee nf Nodal_loads
%
format short e
%
nnd = 21 ; % Number of nodes:
nel = 24 ; % Number of elements:
nne = 3 ; % Number of nodes per element:
nodof =2; % Number of degrees of freedom per node
eldof = nne*nodof; % Number of degrees of freedom per element
%
% Nodes coordinates x and y
%
geom = zeros(nnd,2);
%
geom = [ 0, -10; ... % Node 1

0, 0; ... % Node 2
0, 10; ... % Node 3
10, -10; ... % Node 4
10, 0; ... % Node 5
10, 10; ... % Node 6
20, -10; ... % Node 7
20, 0; ... % Node 8
20, 10; ... % Node 9
30, -10; ... % Node 10
30, 0; ... % Node 11
30, 10; ... % Node 12
40, -10; ... % Node 13
40, 0; ... % Node 14
40, 10; ... % Node 15
50, -10; ... % Node 16
50, 0; ... % Node 17
50, 10; ... % Node 18
60, -10; ... % Node 19
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60, 0; ... % Node 20
60, 10]; % Node 21

%
% Element connectivity
%
connec=zeros(nel,3);
connec = [ 1, 4, 2; ...% Element 1

4, 5, 2; ...% Element 2
2, 5, 3; ...% Element 3
5, 6, 3; ...% Element 4
4, 7, 5; ...% Element 5
7, 8, 5; ...% Element 6
5, 8, 6; ...% Element 7
8, 9, 6; ...% Element 8
7, 10, 8; ...% Element 9
10, 11, 8; ...% Element 10
8, 11, 9; ...% Element 11
11, 12, 9; ...% Element 12
10, 13, 11; ...% Element 13
13, 14, 11; ...% Element 14
11, 14, 12; ...% Element 15
14, 15, 12; ...% Element 16
13, 16, 14; ...% Element 17
16, 17, 14; ...% Element 18
14, 17, 15; ...% Element 19
17, 18, 15; ...% Element 20
16, 19, 17; ...% Element 21
19, 20, 17; ...% Element 22
17, 20, 18; ...% Element 23
20, 21, 18]; % Element 24

%
% Material
%
E = 200000.; % Elastic modulus in MPa
vu = 0.3; % Poisson’s ratio
thick = 5.; % Beam thickness in mm
%
% Form the elastic matrix for plane stress
%
dee = formdsig(E,vu);
%
% Boundary conditions
%
nf = ones(nnd, nodof); % Initialize the matrix nf to 1
nf(19,1) = 0; nf(19,2) = 0; % Prescribed nodal freedom of node 19
nf(20,1) = 0; nf(20,2) = 0; % Prescribed nodal freedom of node 20
nf(21,1) = 0; nf(21,2) = 0; % Prescribed nodal freedom of node 21
%
% Counting of the free degrees of freedom
%
n=0;
for i=1:nnd

for j=1:nodof
if nf(i,j) ~= 0

n=n+1;
nf(i,j)=n;

end
end

end
%
% loading
%
Nodal_loads= zeros(nnd, 2);
%
Nodal_loads(2,1) = 0.; Nodal_loads(2,2) = -1000.; % Node 2
%
%%%%%%%%%%%% End of input %%%%%%%%%%%%
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The input data for this beam consist of

• nnd = 21; number of nodes
• nel = 24; number of elements
• nne = 3; number of nodes per element
• nodof = 2; number of degrees of freedom per node

The thickness of the beam, which is a geometrical property, is given as thick = 5.

9.4.5.2 Nodes Coordinates

The coordinates x and y of the nodes are given in the form of a matrix geom(nnd, 2).

9.4.5.3 Element Connectivity

The element connectivity is given in the matrix connec(nel, 3). Note that the internal numbering of
the nodes is anticlockwise.

9.4.5.4 Material Properties

The material properties, namely, elastic modulus and Poisson’s ratio, are given in the variables
E = 200000 and vu = 0.3. With these properties we form the elastic matrix for plane stress using
the function formdsig.m listed in Appendix A, which returns the matrix dee.

9.4.5.5 Boundary Conditions

In the same fashion as for a truss or a beam, a restrained degree of freedom is assigned the digit 0,
while a free degree of freedom is assigned the digit 1. As previously explained, a node has two
degrees of freedom: a horizontal translation along the axis X and a vertical translation along the
axis Y . As shown in Figure 9.8, nodes 19, 20, and 21 represent the fixed end of the cantilever, which
is fully fixed. The prescribed degrees of freedom of these nodes are assigned the digit 0. All the
degrees of freedom of all the other nodes, which are free, are assigned the digits 1. The information
on the boundary conditions is given in the matrix nf(nnd, nodof).

9.4.5.6 Loading

The concentrated force of 1000 N is applied at node 2. The force will be assembled into the global
force vector fg in the main program.

9.4.5.7 Main Program

The main program CST_PLANE_STRESS.m is listed next:

% THIS PROGRAM USES AN 3-NODE LINEAR TRIANGULAR ELEMENT FOR THE
% LINEAR ELASTIC STATIC ANALYSIS OF A TWO DIMENSIONAL PROBLEM
%
clear all
clc
%
% Make these variables global so they can be shared by other functions
%
global nnd nel nne nodof eldof n
global geom connec dee nf Nodal_loads
%
format long g
%
% ALTER NEXT LINES TO CHOOSE THE NAME OF THE OUTPUT FILE
%
fid =fopen(’CST_COARSE_MESH_RESULTS.txt’,’w’);

© 2013 by Taylor & Francis Group, LLC



244 Introduction to Finite Element Analysis Using MATLAB� and Abaqus

%
% To change the size of the problem or change elastic properties
% supply another input file
%
CST_COARSE_MESH_DATA;
%
%%%%%%%%%%%%%%%%%%%%%%%%%% End of input%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Assemble the global force vector
%
fg=zeros(n,1);
for i=1: nnd
if nf(i,1) ~= 0
fg(nf(i,1))= Nodal_loads(i,1);
end
if nf(i,2) ~= 0;
fg(nf(i,2))= Nodal_loads(i,2);
end
end
%
% Assembly of the global stiffness matrix
%
% initialize the global stiffness matrix to zero
%
kk = zeros(n, n);
%
for i=1:nel
[bee,g,A] = elem_T3(i); % Form strain matrix, and steering vector
ke=thick*A*bee’*dee*bee; % Compute stiffness matrix
kk=form_kk(kk,ke, g); % assemble global stiffness matrix
end
%
%
%%%%%%%%%%%%%%%%%%%%%%% End of assembly %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
delta = kk\fg ; % solve for unknown displacements
%
node_disp=zeros(nnd,2);
%
for i=1: nnd %
if nf(i,1) == 0 %
x_disp =0.; %
else
x_disp = delta(nf(i,1)); %
end
%
if nf(i,2) == 0 %
y_disp = 0.; %
else
y_disp = delta(nf(i,2)); %
end
node_disp(i,:) =[x_disp y_disp];
end
%
% Retrieve the x_coord and y_disp of the nodes located on the neutral axis
%
k = 0;
for i=1:nnd;

if geom(i,2)== 0.
k=k+1;
x_coord(k) = geom(i,1);
vertical_disp(k)=node_disp(i,2);

end
end

© 2013 by Taylor & Francis Group, LLC



Plane Problems 245

%
%
for i=1:nel
[bee,g,A] = elem_T3(i); % Form strain matrix, and steering vector
eld=zeros(eldof,1); % Initialize element displacement to zero
for m=1:eldof
if g(m)==0 eld(m)=0.;
else %
eld(m)=delta(g(m)); % Retrieve element displacement
end
end
%
eps=bee*eld; % Compute strains
EPS(i,:)=eps ; % Store strains for all elements
sigma=dee*eps; % Compute stresses
SIGMA(i,:)=sigma ; % Store strains for all elements
end
%
% Print results to file
%
print_CST_results;
%
% Plot the stresses in the x_direction
%
x_stress = SIGMA(:,1);
cmin = min(x_stress);
cmax = max(x_stress);
caxis([cmin cmax])
patch(’Faces’, connec, ’Vertices’, geom, ’FaceVertexCData’,x_stress, ...
’Facecolor’,’flat’,’Marker’,’o’)
colorbar
%
plottools

After declaring the global variables that will be used by the functions, and the naming of the output
results file ′CST_COARSE_MESH_RESULTS.txt′, the program starts by uploading the data file
and assembling the global force vector fg. The elements’ stiffness matrices, the assembly of the
global stiffness matrix, the solution of the global equations, and the computation of stresses and
strains are obtained as follows.

9.4.5.8 Element Stiffness Matrix

For each element, from 1 to nel, we set up its strain matrix bee, its steering vector g, and calculate
its area A. This is achieved in the function elem_T3.m, which can be found in Appendix A.

• For any element i, retrieve the coordinates x and y of its nodes

x1 = geom(connec(i, 1), 1); y1 = geom(connec(i, 1), 2)

x2 = geom(connec(i, 2), 1); y2 = geom(connec(i, 2), 2)

x3 = geom(connec(i, 3), 1); y3 = geom(connec(i, 3), 2)

• Calculate the area of the element using Equation (7.34), and the coefficients mjk, j, k =
1, 2, 3 using Equation (7.36)

• Using the coefficients mjk, assemble the matrix bee using Equation (9.31)
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• Using the matrix of nodal freedom nf in combination with the connectivity matrix, retrieve
the steering vector g for the element

g =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nf(connec(1, 1), 1)

nf(connec(1, 1), 2)

nf(connec(2, 1), 1)

nf(connec(2, 1), 2)

nf(connec(3, 1), 1)

nf(connec(3, 1), 2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Once the matrix bee is formed, the element stiffness matrix ke is obtained as

ke = thick × A × beeT × dee × bee

9.4.5.9 Assembly of the Global Stiffness Matrix

As shown in Figure 9.5, a linear triangular element has in total 6 degrees of freedom. The global
stiffness matrix [KK] is assembled using a double loop over the components of the vector g. The
script is exactly the same as the one used in the codes Truss.m, Beam.m, and Frame.m. It is given
in the function form_KK.m listed in Appendix A.

9.4.5.10 Solution of the Global System of Equations

The solution of the global system of equations is obtained with one statement:

delta = KK\fg

9.4.5.11 Nodal Displacements

Once the global displacements vector delta is obtained, it is possible to retrieve any nodal displace-
ments. A loop is carried over all the nodes. If a degree of freedom j of a node i is free; that is,
nf(i, j) �= 0, then it could have a displacement different from zero. The value of the displacement is
extracted from the global displacements vector delta:

node_disp(i, j) = delta(nf(i, j))

9.4.5.12 Element Stresses and Strains

To obtain the element stresses and strains, a loop is carried over all the elements:

1. Form element strain matrix bee and “steering” vector g
a. Loop over the degrees of freedom of the element to obtain element displacements

vector edg
b. If g(j) = 0, then the degree of freedom is restrained; edg(j) = 0
c. Otherwise edg(j) = delta(g(j))

2. Obtain element strain vector eps = bee × edg
3. Obtain element stress vector sigma = dee × bee × edg
4. Store the strains for all the elements EPS(i, :) = eps for printing to result file
5. Store the stresses for all the elements SIGMA(i, :) = sigma for printing to result file
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9.4.5.13 Results and Discussion

After running the program CST_PLANE_STRESS.m, the results are written to the text file
CST_COARSE_MESH_RESULTS.txt listed next:

CST_COARSE_MESH_RESULTS.txt
--------------------------------------------------------

******* PRINTING ANALYSIS RESULTS ************

------------------------------------------------------
Nodal displacements
Node disp_x disp_y
1, 1.45081e-002, -6.49329e-002
2, 3.28049e-004, -6.52078e-002
3, -1.42385e-002, -6.47141e-002
4, 1.42332e-002, -4.97317e-002
5, 1.82950e-004, -4.94530e-002
6, -1.38358e-002, -4.94091e-002
7, 1.29745e-002, -3.50495e-002
8, 1.37982e-004, -3.46630e-002
9, -1.26721e-002, -3.47556e-002
10, 1.09224e-002, -2.19922e-002
11, 8.95233e-005, -2.14870e-002
12, -1.07002e-002, -2.16958e-002
13, 8.08085e-003, -1.13485e-002
14, 2.56420e-005, -1.07261e-002
15, -7.90991e-003, -1.10480e-002
16, 4.46383e-003, -3.88383e-003
17, -6.63586e-005, -3.19069e-003
18, -4.26507e-003, -3.66370e-003
19, 0.00000e+000, 0.00000e+000
20, 0.00000e+000, 0.00000e+000
21, 0.00000e+000, 0.00000e+000

------------------------------------------------------
Element stresses

element sigma_(xx) sigma_(yy) tau_(xy)
1, -7.8546e+000, -7.8546e+000, 7.8546e+000
2, -1.3515e+000, 5.1683e+000, 1.3112e+001
3, 6.6118e-002, 9.8937e+000, 9.1400e+000
4, 9.1400e+000, 3.6192e+000, 9.8937e+000
5, -2.5827e+001, -2.1744e+000, 4.8607e+000
6, 1.5601e+000, 8.1980e+000, 1.5027e+001
7, -6.9913e-001, 6.6741e-001, 5.9323e+000
8, 2.4966e+001, 5.6374e+000, 1.4180e+001
9, -4.2552e+001, -5.0356e+000, 1.6983e+000
10, 2.2662e+000, 1.0785e+001, 1.8024e+001
11, -1.6757e+000, -2.3552e+000, 2.8152e+000
12, 4.1961e+001, 8.4119e+000, 1.7462e+001
13, -5.9121e+001, -7.6315e+000, -1.4550e+000
14, 2.6997e+000, 1.3258e+001, 2.0813e+001
15, -2.7809e+000, -5.0108e+000, -2.2163e-001
16, 5.9202e+001, 1.1322e+001, 2.0864e+001
17, -7.5391e+001, -1.0170e+001, -4.5429e+000
18, 2.5481e+000, 1.4627e+001, 2.3117e+001
19, -4.1445e+000, -7.6816e+000, -3.0783e+000
20, 7.6988e+001, 1.3636e+001, 2.4504e+001
21, -9.3536e+001, -1.4198e+001, -4.9720e+000
22, 1.4584e+000, 4.3753e-001, 2.4544e+001
23, -1.6603e+000, -9.9582e+000, -7.7540e+000
24, 9.3738e+001, 2.8121e+001, 2.8182e+001
------------------------------------------------------

Element strains
element epsilon_(xx) epsilon_(yy) gamma_(xy)
1, -2.7491e-005, -2.7491e-005, 1.0211e-004

© 2013 by Taylor & Francis Group, LLC



248 Introduction to Finite Element Analysis Using MATLAB� and Abaqus

2, -1.4510e-005, 2.7869e-005, 1.7045e-004
3, -1.4510e-005, 4.9369e-005, 1.1882e-004
4, 4.0271e-005, 4.3858e-006, 1.2862e-004
5, -1.2587e-004, 2.7869e-005, 6.3189e-005
6, -4.4967e-006, 3.8650e-005, 1.9535e-004
7, -4.4967e-006, 4.3858e-006, 7.7120e-005
8, 1.1637e-004, -9.2623e-006, 1.8434e-004
9, -2.0521e-004, 3.8650e-005, 2.2078e-005
10, -4.8459e-006, 5.0524e-005, 2.3431e-004
11, -4.8459e-006, -9.2623e-006, 3.6597e-005
12, 1.9719e-004, -2.0883e-005, 2.2701e-004
13, -2.8416e-004, 5.0524e-005, -1.8915e-005
14, -6.3881e-006, 6.2239e-005, 2.7057e-004
15, -6.3881e-006, -2.0883e-005, -2.8812e-006
16, 2.7903e-004, -3.2191e-005, 2.7123e-004
17, -3.6170e-004, 6.2239e-005, -5.9058e-005
18, -9.2001e-006, 6.9314e-005, 3.0052e-004
19, -9.2001e-006, -3.2191e-005, -4.0018e-005
20, 3.6448e-004, -4.7301e-005, 3.1856e-004
21, -4.4638e-004, 6.9314e-005, -6.4636e-005
22, 6.6359e-006, 0.0000e+000, 3.1907e-004
23, 6.6359e-006, -4.7301e-005, -1.0080e-004
24, 4.2651e-004, 0.0000e+000, 3.6637e-004

Once the calculations are done, the first thing that needs to be checked is whether the results are
reasonable or not. This task is even more difficult when “in-house” software is used as is the case
here. The results, as shown earlier, are in the form of numbers, hence difficult to interpret.

The first thing we can do is to check whether the deflected shape is correct. For this, we plot
the vertical displacement of the nodes situated along the neutral axis of the cantilever, as shown in
Figure 9.9. As it appears, the shape is acceptable; however, the computed values are just over half
those obtained with the analytical solution, Equation (9.41).

Next we plot a contour of the longitudinal stress σxx using the MATLAB� patch function, as
shown in Figure 9.10. The elements above the neutral axis are in tension, while those below the
neutral axis are in compression, which is obviously correct. Most importantly, the stress value is
constant over each element. However, the neutral axis should be stress free, and that is not the case.
As they are, the results are not satisfactory. Indeed, we are asking too much of the constant strain
(stress) triangle; that is to model a stress gradient, when evidently it cannot do so. We have also used
a coarse mesh without sufficient refinement to model the stress gradient.
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FIGURE 9.9 Deflection of the cantilever beam.
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FIGURE 9.10 Stresses along the x-axis.

9.4.5.14 Program with Automatic Mesh Generation

To better model the stress gradient with a triangular element, we need to refine the mesh. However,
this will require many elements and nodes, which is not easy to prepare by hand as we did for the
coarse mesh. In the new program named CST_PLANE_STRESS_MESH.m, listed next, the mesh
is automatically created by calling the function T3_mesh.m. This function prepares the elements’
connectivity and nodal geometry matrices and is listed after the main program.

CST_PLANE_STRESS_MESH.m
% THIS PROGRAM USES AN 3-NODE LINEAR TRIANGULAR ELEMENT FOR THE
% LINEAR ELASTIC STATIC ANALYSIS OF A TWO DIMENSIONAL PROBLEM
% IT INCLUDES AN AUTOMATIC MESH GENERATION
%
% Make these variables global so they can be shared by other functions
%
clear all
clc
global nnd nel nne nodof eldof n
global geom dee nf Nodal_loads
global Length Width NXE NYE X_origin Y_origin
%
format long g
%
%
% To change the size of the problem or change elastic properties
% supply another input file
%
Length = 60.; % Length of the model
Width =20.; % Width
NXE = 24; % Number of rows in the x direction
NYE = 10; % Number of rows in the y direction
dhx = Length/NXE; % Element size in the x direction
dhy = Width/NYE; % Element size in the x direction
X_origin = 0. ; % X origin of the global coordinate system
Y_origin = Width/2. ; % Y origin of the global coordinate system
%
nne = 3;
nodof = 2;
eldof = nne*nodof;
%
T3_mesh ; % Generate the mesh
%
% Material
%
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E = 200000.; % Elastic modulus in MPa
vu = 0.3; % Poisson’s ratio
thick = 5.; % Beam thickness in mm
%
% Form the elastic matrix for plane stress
%
dee = formdsig(E,vu);
%
%
% Boundary conditions
%
nf = ones(nnd, nodof); % Initialize the matrix nf to 1
%
% Restrain in all directions the nodes situated @
% (x = Length)
%
for i=1:nnd

if geom(i,1) == Length;
nf(i,:) = [0 0];

end
end
%
% Counting of the free degrees of freedom
%
n=0; for i=1:nnd

for j=1:nodof
if nf(i,j) ~= 0

n=n+1;
nf(i,j)=n;

end
end

end
%
% loading
%
Nodal_loads= zeros(nnd, 2); % Initialize the matrix of nodal loads to 0
%
% Apply the load as a concentrated load on the node having coordinate X = Y =0.
%
Force = 1000.; % N
%
for i=1:nnd

if geom(i,1) == 0. && geom(i,2) == 0.
Nodal_loads(i,:) = [0. -Force];

end
end
%
%%%%%%%%%%%%%%%%%%%%%%%%%% End of input%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Assemble the global force vector
%
fg=zeros(n,1);
for i=1: nnd

if nf(i,1) ~= 0
fg(nf(i,1))= Nodal_loads(i,1);

end
if nf(i,2) ~= 0

fg(nf(i,2))= Nodal_loads(i,2);
end

end
%
% Assembly of the global stiffness matrix
%
% initialize the global stiffness matrix to zero
%
kk = zeros(n, n);
%
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for i=1:nel
[bee,g,A] = elem_T3(i); % Form strain matrix, and steering vector
ke=thick*A*bee’*dee*bee; % Compute stiffness matrix
kk=form_kk(kk,ke, g); % assemble global stiffness matrix

end
%
%
%%%%%%%%%%%%%%%%%%%%%%% End of assembly %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
delta = kk\fg ; % solve for unknown displacements
%
for i=1: nnd %

if nf(i,1) == 0 %
x_disp =0.; %

else
x_disp = delta(nf(i,1)); %

end
%

if nf(i,2) == 0 %
y_disp = 0.; %

else
y_disp = delta(nf(i,2)); %

end
node_disp(i,:) =[x_disp y_disp];

end
%
%
% Retrieve the x_coord and y_disp of the nodes located on the neutral axis
%
k = 0;
vertical_disp=zeros(1,NXE+1);
for i=1:nnd;

if geom(i,2)== 0.
k=k+1;
x_coord(k) = geom(i,1);
vertical_disp(k)=node_disp(i,2);

end
end
%
for i=1:nel

[bee,g,A] = elem_T3(i); % Form strain matrix, and steering vector
eld=zeros(eldof,1); % Initialize element displacement to zero
for m=1:eldof

if g(m)==0
eld(m)=0.;
else %
eld(m)=delta(g(m)); % Retrieve element displacement
end

end
%

eps=bee*eld; % Compute strains
EPS(i,:)=eps ; % Store strains for all elements
sigma=dee*eps; % Compute stresses
SIGMA(i,:)=sigma ; % Store stresses for all elements

end
%
%
% Plot stresses in the x_direction
%
x_stress = SIGMA(:,1);
cmin = min(x_stress);
cmax = max(x_stress);
caxis([cmin cmax]);
patch(’Faces’, connec, ’Vertices’, geom, ’FaceVertexCData’,x_stress, ...

’Facecolor’,’flat’,’Marker’,’o’);
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colorbar;
%
plottools;

T3_mesh.m
% This function generates a mesh of triangular elements
%
global nnd nel nne nodof eldof n
global geom connec dee nf Nodal_loads
global Length Width NXE NYE X_origin Y_origin dhx dhy
%
nnd = 0;
k = 0;
for i = 1:NXE

for j=1:NYE
k = k + 1;
n1 = j + (i-1)*(NYE + 1);
geom(n1,:) = [(i-1)*dhx - X_origin (j-1)*dhy - Y_origin ];
n2 = j + i*(NYE+1);
geom(n2,:) = [i*dhx - X_origin (j-1)*dhy - Y_origin ];
n3 = n1 + 1;
geom(n3,:) = [(i-1)*dhx - X_origin j*dhy - Y_origin ];
n4 = n2 + 1;
geom(n4,:) = [i*dhx- X_origin j*dhy - Y_origin ];
nel = 2*k;
m = nel -1;
connec(m,:) = [n1 n2 n3];
connec(nel,:) = [n2 n4 n3];
nnd = n4;

end
end
%

The variables NXE and NYE represent respectively the number of intervals along the x and
y directions, as shown in Figure 9.11. For each interval i and j, four nodes n1, n2, n3, and n4

and two elements are created. The first element has nodes n1, n2, n3, while the second element
has nodes n2, n4, n3. In total the number of elements and nodes created are respectively equal to

n3

n1

dhx

dh
y

i = 1 i = NXE

j=
1

j=
NY

E

n2

n4

FIGURE 9.11 Automatic mesh generation with the CST element.
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FIGURE 9.12 Deflection of the cantilever beam obtained with the fine mesh.
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FIGURE 9.13 Stresses along the x-axis obtained with the fine mesh.

nel = 2 × NXE × NYE, and nnd = (NXE + 1) × (NYE + 1). The module also returns the matrices
geom(nnd, 2) and connec(nel, nne).

The results obtained with the fine mesh are displayed in Figures 9.12 and 9.13. Figure 9.12 shows
the deflection of the nodes situated along the center line (neutral axis). It can be clearly seen that
the solution matches closely the analytical solution. Figure 9.13 displays a contour of the stresses
in the x-direction. The stress gradient can be clearly seen even though each element displays a
constant stress. Those elements within the vicinity of the neutral axis display stress values close
to zero.

9.4.6 ANALYSIS WITH ABAQUS USING THE CST

9.4.6.1 Interactive Edition

In this section, we will analyze the cantilever beam shown in Figure 9.7 with the Abaqus interactive
edition. We keep the same geometrical properties, C = 10 mm, L = 60 mm, t = 5 mm, the same
mechanical properties, a Young’s modulus of 200000 MPa and a Poisson’s ratio of 0.3 and the same
loading; a concentrated force P of 1000 N.
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Start Abaqus CAE. Click on Create Model
Database. On the main menu, click on File and
set Set Work Directory to choose your work-
ing directory. Click on Save As and name the
file BEAM_CST.cae. On the left-hand-side menu,
click on Part to begin creating the model. Name
the part Beam_CST, check 2D Planar, check
Deformable in the type. Choose Shell as the base
feature. Enter an approximate size of 100 mm and
click on Continue (Figure 9.14).

FIGURE 9.14 Creating the Beam_CST Part.

In the sketcher menu,
choose the Create-Lines
Rectangle icon to begin
drawing the geometry of
the beam. Click on Done
in the bottom-left corner
of the viewport window
(Figure 9.15).

FIGURE 9.15 Drawing using the create-lines rectangle icon.
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If we want to make
sure that we will have
nodes lying on the neu-
tral axis of the beam, it is
advisable to partition the
beam along the neutral
axis. On the main menu,
click on Tools then on
Partition. In the dia-
log box, check Face in
Type, and Use shortest
path between 2 points
in Method. Select the
two end points as shown
in Figure 9.16, and in
the prompt area, click on
Create partition.

FIGURE 9.16 Creating a partition.

Define a material named steel
with an elastic modulus of
200000 MPa and a Poisson’s
ratio of 0.3. Next, click on
Sections to create a section
named Beam_section. In the
Category check Solid, and
in the Type, check Homoge-
neous. Click on Continue. In
the Edit Section dialog box,
check Plane stress/strain
thickness and enter 5 mm as
the thickness. Click on OK
(Figure 9.17).

FIGURE 9.17 Creating a plane stress section.

Expand the menu under Parts
and BEAM_CST and dou-
ble click on Section Assign-
ments. With the mouse select
the whole part. In the Edit
Section Assignments dialog
box, select Beam_section and
click on OK (Figure 9.18).

FIGURE 9.18 Editing section assignments.
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In the model tree, double
click on Mesh under the
BEAM_CST. In the main
menu, under Mesh, click on
Mesh Controls. In the dia-
log box, check Tri for Ele-
ment shape and Structured
for Technique. Click on OK
(Figure 9.19).

FIGURE 9.19 Mesh controls.

In the main menu, under
Mesh, click on Element
Type. With the mouse select
all the part in the view-
port. In the dialog box, select
Standard for element library,
Linear for geometric order.
The description of the element
CPS3 A 3-node linear plane
stress triangle can be seen in
the dialog box. Click on OK
(Figure 9.20).

FIGURE 9.20 Selecting element type.

In the main menu, under Seed,
click on Part. In the dialog
box, enter 5 for Approximate
global size. Click on OK and
on Done (Figure 9.21).

FIGURE 9.21 Seeding part by size.
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In the main menu, under
Mesh, click on Part. In the
prompt area, click on Yes. In
the main menu, select View,
then Part Display Options.
In the Part Display Options,
under Mesh, check Show
node labels and Show ele-
ment labels. Click Apply.
The element and node labels
will appear in the viewport
(Figure 9.22). FIGURE 9.22 Mesh.

In the model tree, expand
the Assembly and double
click on Instances. Select
BEAM_CST for Parts and
click OK. In the model
tree, expand Steps and Ini-
tial and double click on BC.
Name the boundary condition
FIXED, select Symmetry/
Antisymmetry/Encastre for
the type, and click on
Continue. Keep the shift key
down, and with the mouse
select the right edge and click
on Done in the prompt area.
In the Edit Boundary Con-
dition check ENCASTRE,
Click OK (Figure 9.23).

FIGURE 9.23 Imposing BC using geometry.

In the model tree, double
click on Steps. Name the step
Apply_loads. Set the proce-
dure to General and select
Static, General. Click on
Continue. Give the step a
description and click OK. In
the model tree, under steps,
and under Apply_loads, click
on Loads. Name the load
Point_Load and select Con-
centrated Force as the type.
Click on Continue. Using the
mouse click on the middle of
the left edge, and click on
Done in the prompt area. In
the Edit Load dialog box,
enter −1000 for CF2. Click
OK (Figure 9.24). FIGURE 9.24 Imposing a concentrated force using geometry.
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In the model tree, expand the Field Output Requests and then double click on F-Output-1.
F-Output-1 is the default and is automatically generated when creating the step. Uncheck the
variables Contact and select any other variable you wish to add to the field output. Click on OK.
Under Analysis, right click on Jobs and then click on Create.

In the Create Job dialog box, name the job BEAM_CST and click on Continue. In the Edit Job
dialog box, enter a description for the job. Check Full analysis, select to run the job in Background,
and check to start it immediately. Click OK. Expand the tree under Jobs, right click on BEAM_CST.
Then, click on Submit. If you get the following message BEAM_CST completed successfully in
the bottom window, then your job is free of errors and was executed properly (Figure 9.25). Notice
that Abaqus has generated an input file for the job BEAM_CST.inp, which you can open with your
preferred text editor.

Under the top menu, in the Module scroll to Visualization, and click to load Abaqus Viewer.
On the main menu, under File, click Open, navigate to your working directory, and open the file
BEAM_CST.odb. It should have the same name as the job you submitted. Click on the Common
options icon to display the Common Plot options dialog box. Under labels, check Show Element
labels and Show Node labels to display elements and nodes’ numbering. Click on the icon Plot
Contours on both shapes to display the deformed shape of the beam. Under the main menu, select U
and U2 to plot the vertical displacement. It can be seen that the displacement of the left edge is equal
to −0.965 mm, which is almost similar with the analytical solution and the results obtained with the
MATLAB code (Figure 9.26). In the menu bar, click on Report and Field Output. In the Report
Field Output dialog box, for Position select Unique nodal, check U1, and U2 under U: Spatial

FIGURE 9.25 Analyzing a job in Abaqus CAE.

FIGURE 9.26 Plotting displacements on deformed and undeformed shapes.
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displacement. Then click on click on Set up. Click on Select to navigate to your working directory.
Name the file BEAM_CST.rpt. Uncheck Append to file and click OK. Use your favorite text editor
and open the file BEAM_CST.rpt, which should be the same as the one listed next.

********************************************************************************
Field Output Report, written Wed May 11 01:15:14 2011

Source 1
---------

ODB: C:/Abaqus_FILES/BEAM_CST.odb
Step: Apply_loads
Frame: Increment 1: Step Time = 1.000

Loc 1 : Nodal values from source 1

Output sorted by column "Node Label".

Field Output reported at nodes for part: BEAM_CST-1

Node U.U1 U.U2
Label @Loc 1 @Loc 1

-------------------------------------------
1 -215.7E-06 -96.56E-03
2 -26.59E-36 85.37E-36
3 -2.141E-33 -262.8E-36
4 -22.10E-03 -95.95E-03
5 22.02E-03 -95.90E-03
6 2.269E-33 -954.4E-36
7 -77.91E-06 -84.47E-03
8 -70.86E-06 -72.89E-03
9 -68.46E-06 -61.63E-03
10 -63.12E-06 -50.84E-03
11 -55.86E-06 -40.66E-03
12 -47.25E-06 -31.25E-03
13 -36.83E-06 -22.76E-03
14 -22.80E-06 -15.36E-03
15 -2.085E-06 -9.187E-03
16 25.90E-06 -4.408E-03
17 35.64E-06 -1.232E-03
18 -1.641E-33 27.34E-36
19 -3.622E-03 -2.115E-03
20 -6.811E-03 -5.371E-03
21 -9.712E-03 -10.08E-03
22 -12.32E-03 -16.16E-03
23 -14.64E-03 -23.47E-03
24 -16.65E-03 -31.86E-03
25 -18.35E-03 -41.18E-03
26 -19.75E-03 -51.26E-03
27 -20.84E-03 -61.97E-03
28 -21.61E-03 -73.14E-03
29 -22.02E-03 -84.56E-03
30 -10.99E-03 -96.03E-03
31 10.85E-03 -96.00E-03
32 21.87E-03 -84.45E-03
33 21.44E-03 -73.01E-03
34 20.68E-03 -61.85E-03
35 19.62E-03 -51.15E-03
36 18.24E-03 -41.06E-03
37 16.55E-03 -31.75E-03
38 14.56E-03 -23.35E-03
39 12.25E-03 -16.03E-03
40 9.620E-03 -9.948E-03
41 6.673E-03 -5.248E-03
42 3.418E-03 -2.033E-03
43 1.539E-33 104.5E-36
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44 -10.98E-03 -84.51E-03
45 -10.70E-03 -72.96E-03
46 -10.29E-03 -61.73E-03
47 -9.734E-03 -50.96E-03
48 -9.029E-03 -40.80E-03
49 -8.172E-03 -31.42E-03
50 -7.160E-03 -22.96E-03
51 -5.992E-03 -15.58E-03
52 -4.668E-03 -9.433E-03
53 -3.184E-03 -4.664E-03
54 -1.547E-03 -1.399E-03
55 1.601E-03 -1.416E-03
56 3.183E-03 -4.601E-03
57 4.635E-03 -9.356E-03
58 5.934E-03 -15.51E-03
59 7.081E-03 -22.89E-03
60 8.075E-03 -31.36E-03
61 8.916E-03 -40.75E-03
62 9.603E-03 -50.90E-03
63 10.14E-03 -61.67E-03
64 10.52E-03 -72.90E-03
65 10.77E-03 -84.42E-03

9.4.6.2 Keyword Edition

In this section, we will use a text editor to prepare an input file for the cantilever beam shown in
Figure 9.7. The file is named BEAM_CST_Keyword.inp and is listed next:

*Heading
Analysis of cantilever beam as a plane stress problem

*Preprint, echo=YES

**
**
** Node generation

**
**
*NODE
1, 0., 0.
5, 0., 20.
61, 60., 0.
65, 60., 20.

*NGEN,NSET=Left_Edge
1,5

*NGEN,NSET=Right_Edge
61,65

*NFILL
Left_Edge,Right_Edge,12,5

*NSET, NSET = Loaded_node
3

**
** Element generation

**
*ELEMENT,TYPE=CPS3
1, 1, 6, 7

*ELGEN, ELSET = ODD
1, 4, 1, 2, 12, 5, 8

**
*ELEMENT,TYPE=CPS3
2, 1, 7, 2

*ELGEN,ELSET = EVEN
2, 4, 1, 2, 12, 5, 8

*ELSET, ELSET = All_Elements
EVEN, ODD

*MATERIAL, NAME =STEEL

*ELASTIC
200000., 0.3
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*SOLID SECTION, ELSET = All_Elements, MATERIAL = STEEL
5.

**
** BOUNDARY CONDITIONS

**
**
*Boundary
Right_Edge, encastre

**
** STEP: Apply_Loads

**
*Step, name=Apply_Loads

*Static
1., 1., 1e-05, 1.

**
** LOADS

**
*Cload
Loaded_node, 2, -1000.

**
**
** OUTPUT REQUESTS

**
**
*Output, field, variable=PRESELECT

**
*Output, history, variable=PRESELECT

*End Step

1. The input file always starts with the keyword *HEADING, which in this case is entered
as Analysis of cantilever beam as a plane stress problem.

2. Using *Preprint, echo=YES will allow to print an echo of the input file to the file with
an extension *.dat.

3. Using the keyword *Node, we define the four corner nodes 1, 5, 61, and 65 as shown in
Figure 9.27.

4. Using the keyword *NGEN we generate the nodes located on the left edge. In the data line,
we enter the number of the first end node 1, which has been previously defined, then the
number of the second end node 5, which also must have been previously defined, followed
by the increment in the numbers between each node along the line, which in this case is
the default 1. We then group the nodes in a set named Left_Edge.

5. Using the keyword *NGEN again, we generate the nodes located on the right edge and
group them in a set named Right_Edge.

6. Using the keyword *NFILL, we generate all the remaining nodes by filling in nodes
between two bounds. In the data line, we enter first the node sets Left_Edge and

6
60 mm

61

65

20
 m

m

1 1
22

3

5
10

8 7

7

1 kN

FIGURE 9.27 Generating a mesh manually in Abaqus.
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Right_Edge followed by the number of intervals along each line between bounding nodes,
in this case 12, and the increment in node numbers from the node number at the first bound
set end, which in this case is 5 as shown in Figure 9.27.

7. Using the keyword *NSET, NSET = Loaded_node, we create a node set containing
node 3. This will be used to apply the concentrated load of 1000 N.

8. Using the keyword *ELEMENT and Type = CPS3, which stands for a continuum plane
stress three node triangle, we define elements 1 and 2 as well as their connectivity.

9. Using the keyword *ELGEN, we generate all the elements having an odd number which
we group in the set ODD. The keyword *ELGEN requires in its data line:
a. Master element number.
b. Number of elements to be defined in the first row generated, including the master

element.
c. Increment in node numbers of corresponding nodes from element to element in the row.

The default is 1.
d. Increment in element numbers in the row. The default is 1.
e. If necessary, copy this newly created master row to define a layer of elements.
f. Number of rows to be defined, including the master row. The default is 1.
g. Increment in node numbers of corresponding nodes from row to row.
h. Increment in element numbers of corresponding elements from row to row.
i. If necessary, copy this newly created master layer to define a block of elements (only

necessary for a 3D mesh).
j. Number of layers to be defined, including the master layer. The default is 1.
k. Increment in node numbers of corresponding nodes from layer to layer.
l. Increment in element numbers of corresponding elements from layer to layer.

10. Using the same procedure, we generate all the elements having an even number, which we
group in the set EVEN.

11. Next, we use the keyword *elset to group all the elements in an element set named
All_Elements consisting of element sets ODD and EVEN listed in the data line.

12. Using the keywords *Material and *elastic, we define a material named steel having an
elastic modulus of 200,000 MPa and a Poisson’s ratio of 0.3.

13. Using the keyword *solid section, we assign the material steel to all the elements, and in
the data line we enter the thickness of the domain, which in this case is 5 mm.

14. Using the created node sets, we impose the boundary conditions with the keyword
*Boundary. We fully fix the node set Right_Edge by using encastre.

15. Next using the keyword *step, we create a step named Apply_Loads. The keyword *static
indicates that it will be a general static analysis.

16. Using the keyword *cload, we apply a concentrated load of −1000 N in the direction 2 to
the node in node set Loaded_node.

17. Using the keywords *Output, field, variable=PRESELECT, and *Output, history,
variable=PRESELECT we request the default variables for both field and history outputs.

18. Finally, we end the step and the file with *End Step.

At the command line type Abaqus job=BEAM_CST_Keyword inter followed by Return. If you
get an error, open the file with extension *.dat to see what type of error. To load the visualization
model, type Abaqus Viewer at the command line.

On the main menu, under File, click Open, navigate to your working directory, and open the
file BEAM_CST_Keyword.odb. Click on the Common options icon to display the Common Plot
options dialog box. Under labels, check Show Element labels and Show Node labels to display
elements and nodes’ numbering. Click on the icon Plot Deformed Shape to display the deformed
shape of the beam. On the main menu, click on Results then on Field Output to open the Field
Output dialog box. Choose U Spatial displacements at nodes. For component, choose U2 to plot
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FIGURE 9.28 Displacement contour.

the vertical displacement. Notice that the displacements contour is exactly the same as obtained
previously, except that the node and element numbering is different (Figure 9.28).

9.5 LINEAR STRAIN TRIANGLE

A more versatile element in the triangular family is the linear strain triangle shown in Figure 9.29.
It has six nodes. The sides can be straight or curved. It can be used to mesh domains with curved
boundaries. Its shape functions have already been defined in Chapter 7, and they are given as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N1(ξ, η)

N2(ξ, η)

N3(ξ, η)

N4(ξ, η)

N5(ξ, η)

N6(ξ, η)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−λ(1 − 2λ)

4ξλ

−ξ(1 − 2ξ)

4ξη

−η(1 − 2η)

4ηλ

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9.42)

with λ = 1 − ξ − η
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FIGURE 9.29 Linear strain triangular element.
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9.5.1 DISPLACEMENT FIELD

The displacement field over the element is approximated as

u = N1u1 + N2u2 + N3u3 + N4u4 + N5u5 + N6u6 (9.43)

v = N1v1 + N2v2 + N3v3 + N4v4 + N5v5 + N6v6 (9.44)

or in a matrix form as

{
u

v

}
=

[
N1 0 | N2 0 | N3 0 | N4 0 | N5 0 | N6 0

0 N1 | 0 N2 | 0 N3 | 0 N4 | 0 N5 | 0 N6

]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1

v1

u2

v2

u3

v3

u4

v4

u5

v5

u6

v6

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(9.45)

or more compactly as

{U} = [N]{a} (9.46)

The element is isoparametric, the coordinates x and y of any point of the parent element are given as

x = N1x1 + N2x2 + N3x3 + N4x4 + N5x5 + N6x6 (9.47)

y = N1y1 + N2y2 + N3y3 + N4y4 + N5y5 + N6y6 (9.48)

where the couple (xi, yi) represents the coordinates of the nodes.
The matrix [J] is the Jacobian of the geometrical transformation and is given as

[J] =

⎡
⎢⎢⎣

∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

6∑
i=1

∂Ni

∂ξ
xi

6∑
i=1

∂Ni

∂ξ
yi

6∑
i=1

∂Ni

∂η
xi

6∑
i=1

∂Ni

∂η
yi

⎤
⎥⎥⎥⎦

© 2013 by Taylor & Francis Group, LLC



Plane Problems 265

The partial derivatives ∂Ni

∂ξ
and ∂Ni

∂η
are obtained by deriving the shape functions Ni(ξ, η), i = 1 to 6

with respect to ξ and η. The Jacobian is rewritten as

[J] = 1

4

[
1 − 4λ 4(λ − ξ) −1 + 4ξ 4η 0 −4η

1 − 4λ −4ξ 0 4ξ −1 + 4η 4(λ − η)

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

x6 y6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(9.49)

with λ = 1 − ξ − η.

9.5.2 STRAIN MATRIX

Substituting for the displacements u and v in Equation (9.6) using Equation (9.45), the strain vector
is obtained as

{ε} = [B]{a} (9.50)

with

[B] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂N1

∂x
0 | ∂N2

∂x
0 | ∂N3

∂x
0 | ∂N4

∂x
0 | ∂N5

∂x
0 | ∂N6

∂x
0

0
∂N1

∂y
| 0

∂N2

∂y
| 0

∂N3

∂y
| 0

∂N4

∂y
| 0

∂N5

∂y
| 0

∂N6

∂y

∂N1

∂y

∂N1

∂x
| ∂N2

∂y

∂N2

∂x
| ∂N3

∂y

∂N3

∂x
| ∂N4

∂y

∂N4

∂x
| ∂N5

∂y

∂N5

∂x
| ∂N6

∂y

∂N6

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(9.51)

To evaluate the matrix [B], it is necessary to relate the partial derivatives in the (x, y) coordinates to
the local coordinates (ξ, η). This is achieved using the chain rule as

∂Ni

∂ξ
= ∂Ni

∂x

∂x

∂ξ
+ ∂Ni

∂y

∂y

∂ξ
(9.52)

∂Ni

∂η
= ∂Ni

∂x

∂x

∂η
+ ∂Ni

∂y

∂y

∂η
(9.53)

which can be rewritten in matrix form as

⎧⎪⎪⎨
⎪⎪⎩

∂Ni

∂ξ

∂Ni

∂η

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎣

∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

∂Ni

∂x

∂Ni

∂y

⎫⎪⎪⎬
⎪⎪⎭

(9.54)
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The derivatives of the shape functions in the (x, y) system are obtained by inversing the previous
equation; that is,

⎧⎪⎪⎨
⎪⎪⎩

∂Ni

∂x

∂Ni

∂y

⎫⎪⎪⎬
⎪⎪⎭

= [J]−1

⎧⎪⎪⎨
⎪⎪⎩

∂Ni

∂ξ

∂Ni

∂η

⎫⎪⎪⎬
⎪⎪⎭

(9.55)

In practice, the matrix [B] is not calculated but assembled from the values of ∂Ni

∂x
and ∂Ni

∂y
obtained

with Equation (9.55).

9.5.3 STIFFNESS MATRIX

The stiffness matrix of the element is given as

[Ke] =
[�

Ae

[B]T[D][B]t dA

]
(9.56)

The integration over the volume is evaluated using the Hammer formula (see Chapter 7):

[Ke] = t
+1�
0

1−ξ�
0

[B(ξ, η]T[D][B(ξ, η)]det[J(ξ, η)]dη dξ

= t
nhp∑
i=1

Wi[B(ξi, ηi]T[D][B(ξi, ηi)]det[J(ξi, ηi)] (9.57)

where nhp represents the number of Hammer points.

9.5.4 COMPUTER CODE: LST_PLANE_STRESS_MESH.m

The program is virtually identical to its predecessor CST_PLANE_STRESS_MESH.m, except
that the stiffness matrix is computed using numerical integration. The size of some of the arrays
has increased to account for the extra degrees of freedom. In order to assess the performance of the
element, we will analyze the cantilever beam shown in Figure 9.7.

The program is listed next and includes an automatic mesh generation, function T6_mesh.m, as
well as another function, prepare_contour_data.m, that prepares the stress data for plotting using
the MATLAB function contourf.

% THIS PROGRAM USES A 6-NODE LINEAR TRIANGULAR ELEMENT FOR THE
% LINEAR ELASTIC STATIC ANALYSIS OF A TWO DIMENSIONAL PROBLEM
% IT INCLUDES AN AUTOMATIC MESH GENERATION
%
% Make these variables global so they can be shared by other functions
%
clear all
clc
global nnd nel nne nodof eldof n
global connec geom dee nf Nodal_loads XIG YIG
global Length Width NXE NYE X_origin Y_origin
%
format long g
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%
%
% To change the size of the problem or change elastic properties
% supply another input file
%
Length = 60.; % Length of the model
Width =20.; % Width
NXE = 12; % Number of rows in the x direction
NYE = 5; % Number of rows in the y direction
XIG = zeros(2*NXE+1,1); YIG=zeros(2*NYE+1,1); % Vectors holding grid coordinates
dhx = Length/NXE; % Element size in the x direction
dhy = Width/NYE; % Element size in the x direction
X_origin = 0. ; % X origin of the global coordinate system
Y_origin = Width/2. ; % Y origin of the global coordinate system
%
nne = 6;
nodof = 2;
eldof = nne*nodof;
%
T6_mesh ; % Generate the mesh
%
% Material
%
E = 200000.; % Elastic modulus in MPa
vu = 0.3; % Poisson’s ratio
thick = 5.; % Beam thickness in mm
nhp = 3; % Number of sampling points
%
% Form the elastic matrix for plane stress
%
dee = formdsig(E,vu);
%
%
% Boundary conditions
%
nf = ones(nnd, nodof); % Initialize the matrix nf to 1
%
% Restrain in all directions the nodes situated @
% (x = Length)
%
for i=1:nnd

if geom(i,1) == Length;
nf(i,:) = [0 0];

end
end
%
% Counting of the free degrees of freedom
%
n=0;
for i=1:nnd

for j=1:nodof
if nf(i,j) ~= 0

n=n+1;
nf(i,j)=n;

end
end

end
%
% loading
%
Nodal_loads= zeros(nnd, 2); % Initialize the matrix of nodal loads to 0
%
% Apply an equivalent nodal load of (Pressure*thick*dhx) to the central
% node located at x=0 and y = 0.
%
Force = 1000.; % N
%
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for i=1:nnd
if geom(i,1) == 0. && geom(i,2) == 0.

Nodal_loads(i,:) = [0. -Force];
end

end
%
%%%%%%%%%%%%%%%%%%%%%%%%%% End of input%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Assemble the global force vector
%
fg=zeros(n,1);
for i=1: nnd

if nf(i,1) ~= 0
fg(nf(i,1))= Nodal_loads(i,1);

end
if nf(i,2) ~= 0

fg(nf(i,2))= Nodal_loads(i,2);
end

end
%
% Assembly of the global stiffness matrix
%
%
% Form the matrix containing the abscissas and the weights of Hammer points
%
samp=hammer(nhp);
%
% initialize the global stiffness matrix to zero
%
kk = zeros(n, n);
%
for i=1:nel

[coord,g] = elem_T6(i); % Form strain matrix, and steering vector
ke=zeros(eldof,eldof) ; % Initialize the element stiffness matrix to zero
for ig = 1:nhp

wi = samp(ig,3);
[der,fun] = fmT6_quad(samp, ig);
jac = der*coord;
d = det(jac);
jac1=inv(jac); % Compute inverse of the Jacobian
deriv=jac1*der; % Derivative of shape functions in global coordinates
bee=formbee(deriv,nne,eldof); % Form matrix [B]
ke=ke + d*thick*wi*bee’*dee*bee; % Integrate stiffness matrix

end
kk=form_kk(kk,ke, g); % assemble global stiffness matrix

end
%
%
%%%%%%%%%%%%%%%%%%%%%%% End of assembly %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
delta = kk\fg ; % solve for unknown displacements
%
for i=1: nnd %

if nf(i,1) == 0 %
x_disp =0.; %

else
x_disp = delta(nf(i,1)); %

end
%

if nf(i,2) == 0 %
y_disp = 0.; %

else
y_disp = delta(nf(i,2)); %

end
node_disp(i,:) =[x_disp y_disp];
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end
%
%
% Retrieve the x_coord and y_disp of the nodes located on the neutral axis
%
k = 0;
for i=1:nnd;

if geom(i,2)== 0.
k=k+1;
x_coord(k) = geom(i,1);
vertical_disp(k)=node_disp(i,2);

end
end
%
nhp = 1; % Calculate stresses at the centroid of the element
samp=hammer(nhp);
%
for i=1:nel

[coord,g] = elem_T6(i); % Retrieve coordinates and steering vector
eld=zeros(eldof,1); % Initialize element displacement to zero
for m=1:eldof %

if g(m)==0 %
eld(m)=0.; %

else %
eld(m)=delta(g(m)); % Retrieve element displacement from the

% global displacement vector
end

end
%

for ig=1: nhp
[der,fun] = fmT6_quad(samp, ig); % Derivative of shape functions in

% local coordinates
jac=der*coord; % Compute Jacobian matrix
jac1=inv(jac); % Compute inverse of the Jacobian
deriv=jac1*der; % Derivative of shape functions

% in global coordinates
bee=formbee(deriv,nne,eldof); % Form matrix [B]
eps=bee*eld; % Compute strains
sigma=dee*eps ; % Compute stresses

end % Compute stresses
SIGMA(i,:)=sigma ; % Store stresses for all elements

end
%
% Prepare stresses for plotting
%
[ZX, ZY, ZT, Z1, Z2]=prepare_contour_data(SIGMA);
%
% Plot mesh using patches
%
% patch(’Faces’, connec, ’Vertices’, geom, ’FaceVertexCData’,hsv(nel), ...

’Facecolor’,’none’,’Marker’,’o’);
%
% Plot stresses in the x_direction
%
[C,h]= contourf(XIG,YIG,ZX,40);
%clabel(C,h);
colorbar plottools;

T6_mesh.m
% This function generates a mesh of the linear strain triangular element
%
global nnd nel geom connec XIG YIG
global Length Width NXE NYE X_origin Y_origin dhx dhy
%
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%
nnd = 0;
k = 0;
for i = 1:NXE

for j=1:NYE
k = k + 1;
n1 = (2*j-1) + (2*i-2)*(2*NYE+1) ;
n2 = (2*j-1) + (2*i-1)*(2*NYE+1);
n3 = (2*j-1) + (2*i)*(2*NYE+1);
n4 = n1 + 1;
n5 = n2 + 1;
n6 = n3 + 1 ;
n7 = n1 + 2;
n8 = n2 + 2;
n9 = n3 + 2;
%
geom(n1,:) = [(i-1)*dhx - X_origin (j-1)*dhy - Y_origin];
geom(n2,:) = [((2*i-1)/2)*dhx - X_origin (j-1)*dhy - Y_origin ];
geom(n3,:) = [i*dhx - X_origin (j-1)*dhy - Y_origin ];
geom(n4,:) = [(i-1)*dhx - X_origin ((2*j-1)/2)*dhy - Y_origin ];
geom(n5,:) = [((2*i-1)/2)*dhx - X_origin ((2*j-1)/2)*dhy - Y_origin ];
geom(n6,:) = [i*dhx - X_origin ((2*j-1)/2)*dhy - Y_origin ];
geom(n7,:) = [(i-1)*dhx - X_origin j*dhy - Y_origin];
geom(n8,:) = [((2*i-1)/2)*dhx - X_origin j*dhy - Y_origin];
geom(n9,:) = [i*dhx - X_origin j*dhy - Y_origin];
%
nel = 2*k;
m = nel -1;
connec(m,:) = [n1 n2 n3 n5 n7 n4];
connec(nel,:) = [n3 n6 n9 n8 n7 n5];
max_n = max([n1 n2 n3 n4 n5 n6 n7 n8 n9]);
if(nnd <= max_n); nnd = max_n; end;
%
% XIN and YIN are two vectors that holds the coordinates X and Y
% of the grid necessary for the function contourf (XIN,YIN, stress)
%
XIG(2*i-1) = geom(n1,1); XIG(2*i) = geom(n2,1); XIG(2*i+1) = geom(n3,1);
YIG(2*j-1) = geom(n1,2); YIG(2*j) = geom(n4,2); YIG(2*j+1) = geom(n7,2);

end
end
%

The variables NXE and NYE represent respectively the number of intervals along the x and y
directions, as shown in Figure 9.30. For each interval i and j, nine nodes n1, n2, n3, n4, n5, n6, n7, n8

and n9 and two elements are created. The first element has nodes n1, n2, n3, n5, n7, n4, while the
second element has nodes n3, n6, n9, n8, n7, n5. In total the number of elements and nodes created
are respectively equal to NEL = 2 × NXE × NYE, and nnd = (2 × NXE + 1) × (2 × NYE + 1).
The module also returns the matrices geom(nnd, 2) and connec(nel, nne) as well as two vectors
XIG(2 × NXE + 1) and YIG(2 × NYE + 1) holding the grid coordinates. These will be used for
contour plotting using the MATLAB function contour f.

9.5.4.1 Numerical Integration of the Stiffness Matrix

The stiffness matrix is evaluated as

[Ke] = t
nhp∑
i=1

Wi[B(ξi, ηi]T[D][B(ξi, ηi)]det[J(ξi, ηi)] (9.58)
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FIGURE 9.30 Automatic mesh generation with the LST element.

1. For every element i = 1 to nel
2. Retrieve the coordinates of its nodes coord(nne, 2) and its steering vector g(eldof) using

the function elem_t6.m
3. Initialize the stiffness matrix to zero.

a. Loop over the Hammer points ig = 1 to nhp
b. Retrieve the weight wi as samp(ig, 3)

c. Use the function fmT6_quad.m to compute the shape functions, vector fun, and their
local derivatives, der, at the local coordinates ξ = samp(ig, 1) and η = samp(ig, 2)

d. Evaluate the Jacobian jac = der ∗ coord
e. Evaluate the determinant of the Jacobian as d = det(jac)
f. Compute the inverse of the Jacobian as jac1 = inv(jac)
g. Compute the derivatives of the shape functions with respect to the global coordinates

x and y as deriv = jac1 ∗ der
h. Use the function formbee.m to form the strain matrix bee
i. Compute the stiffness matrix as ke = ke + d ∗ thick ∗ wi ∗ bee′ ∗ dee ∗ bee

4. Assemble the stiffness matrix ke into the global matrix kk

The abscissa and weights for the Hammer formula are listed in Table 8.2 and given by the function
hammer.m listed in Appendix A.

9.5.4.2 Computation of the Stresses and Strains

Once the global system of equations is solved, we will compute the stresses at the centroid of the
elements. For this we set nhp = 1. Then for each element:

1. Retrieve the coordinates of its nodes coord(nne, 2) and its steering vector g(eldof) using
the function elem_t6.m

2. Retrieve its nodal displacements eld(eldof) from the global vector of displacements delta(n)
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FIGURE 9.31 Deflection of the cantilever beam obtained with the LST element.

a. Loop over the Hammer points ig = 1 to nhp
b. Use the function fmT6_quad.m to compute the shape functions, vector fun, and their

local derivatives, der, at the local coordinates ξ = samp(ig, 1) and η = samp(ig, 2)

c. Evaluate the Jacobian jac = der ∗ coord
d. Evaluate the determinant of the Jacobian as d = det(jac)
e. Compute the inverse of the Jacobian as jac1 = inv(jac)
f. Compute the derivatives of the shape functions with respect to the global coordinates

x and y as deriv = jac1 ∗ der
g. Use the function formbee.m to form the strain matrix bee
h. Compute the strains as eps = bee ∗ eld
i. Compute the stresses as sigma = dee ∗ eps

3. Store the stresses in the matrix SIGMA(nel, 3)

The stresses computed at the centers of the elements are reorganized in a format suitable for
plotting with the MATLAB graphic functions. In the present case, the stresses stored in the array
SIGMA(nel, 3) are fed to the function prepare_contour_data.m listed in Appendix A.

For every node, the function locates all the elements surrounding it. Then the stresses are aver-
aged and assigned to the node and stored in the matrices ZX, ZY, ZT, Z1, and Z2 corresponding
respectively to σxx, σyy, and τxy and the principal stresses σ1 and σ2. In this particular case, the matrix
ZX and the vectors XIG and YIG are used in the MATLAB function contourf to produce a plot of
the stresses σxx.

The results of the analysis are displayed in Figures 9.31 and 9.32. Figure 9.31 shows the deflection
of the nodes situated along the center line (neutral axis). It can be clearly seen that the solution matches
closely the analytical solution. Figure 9.32 displays a contour plot, the stresses in the x-direction.
The stress gradient can be clearly seen. The stresses along the neutral axis are equal to zero.

9.5.5 ANALYSIS WITH ABAQUS USING THE LST

9.5.5.1 Interactive Edition

In this section, we will analyze the plate with a hole shown in Figure 9.33 using the linear strain
triangle. The plate is made of aluminum with an elastic modulus of 70 GPa and a Poisson’s ratio of
0.33. The plate is 5 mm thick and subject to a uniform pressure on both sides of 50 MPa. Since the
plate presents two planes of symmetry in both geometry and loading, we will analyze a quarter only
as shown in Figure 9.34. Indeed, whenever possible always take advantage of symmetry to simplify
the model.
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FIGURE 9.32 Stresses along the x-direction obtained with the LST element.
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FIGURE 9.34 Making use of symmetry.
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Start Abaqus CAE. Click
on Create Model Database.
On the main menu, click
on File and set Set Work
Directory to choose your
working directory. Click on
Save As and name the file
Plate_LST.cae. On the left-
hand-side menu, click on Part
to begin creating the model.
Name the part Plate_LST,
check 2D Planar, and check
Deformable in the type.
Choose Shell as the base fea-
ture. Enter an approximate
size of 100 mm and sketch a
quarter of the part as shown.
In the sketcher menu, choose
the Create arc center and
2 end points icon to cre-
ate the arc, and Create-Lines
Rectangle icon to create the
edges. When finished, click
on Done in the bottom-left
corner of the viewport win-
dow (Figure 9.35).

FIGURE 9.35 Creating the Plate_LST Part.

Define a material named
Aluminum with an elastic
modulus of 70000 MPa and a
Poisson’s ratio of 0.32. Next,
click on Sections to create a
section named Plate_section.
In the Category check Solid,
and in the Type, check Homo-
geneous. Click on Con-
tinue. In the Edit Section
dialog box, check Plane
stress/strain thickness and
enter 5 mm as the thickness.
Click on OK (Figure 9.36).

FIGURE 9.36 Creating a plane stress section.

© 2013 by Taylor & Francis Group, LLC



Plane Problems 275

Expand the menu under Parts
and Plate_LST and dou-
ble click on Section Assign-
ments. With the mouse select
the whole part. In the Edit
Section Assignments dialog
box, select Plate_section and
click on OK (Figure 9.37).

FIGURE 9.37 Editing section assignments.

In the model tree, dou-
ble click on Mesh under
the Plate_LST. In the main
menu, under Mesh, click
on Mesh Controls. In the
dialog box, check Tri for
Element shape and Struc-
tured for Technique. Click
on OK. In the main menu,
under Mesh, click on Ele-
ment Type. In the dialog
box, select Standard for ele-
ment library, Quadratic for
geometric order. The descrip-
tion of the element CPS6M
6-node modified quadratic
plane stress triangle can be
seen in the dialog box. Click
on OK (Figure 9.38).

FIGURE 9.38 Mesh controls.
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In the main menu, under Seed,
click on Edges. Select the
arc first. In the Local seeds,
select by number and enter
15. Click on the vertical left
edge, enter 20 and select sim-
ple for bias. The idea of this is
to refine the mesh in the vicin-
ity of the hole. Do the same
for the other edges. When fin-
ished, click on OK and on
Done. Under Mesh, click on
Part and then Yes to mesh the
part (Figure 9.39).

FIGURE 9.39 Seeding edge by size and simple bias.

Expand the menu under
Plate_LST and click on Sets.
In the Create set dialog box,
name the set Left_Edge and
check Node. Click on Con-
tinue, and with the mouse
select the nodes as shown
in Figure 9.40. Repeat the
procedure to create another
node set that you will name
Bottom_Edge.

FIGURE 9.40 Creating a node set.
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Expand the menu under
Plate_LST and click on Sur-
faces. In the Create Sur-
face dialog box, name the set
Loaded_Surface and check
Geometry. Click on Con-
tinue, and with the mouse
select the left edge shown in
Figure 9.41.

FIGURE 9.41 Creating a surface.

In the model tree, expand the
Assembly and double click on
Instances. Select Plate_LST
for Parts, and click OK. In the
model tree, expand Steps and
Initial, and double click on
BC. Name the boundary con-
dition Left_side, select Dis-
placement/Rotation for the
type, and click on Con-
tinue. In the bottom-right cor-
ner of the viewport, click
on sets and in the dia-
log box select Plate_LST-
1.Left_Edge. Click on Con-
tinue. In the Edit Boundary
Condition check U1. Click
OK. Double click again on
BC. Name the boundary con-
dition Bottom_side, select
Displacement/Rotation for
the type, and click on Con-
tinue. In the bottom-right cor-
ner of the viewport, click
on sets and in the dia-
log box select Plate_LST-
1.Bottom_Edge. Click on
Continue. In the Edit Bound-
ary Condition check U2.
Click OK (Figure 9.42).

FIGURE 9.42 Imposing BC using node sets.
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In the model tree, double
click on Steps. Name the step
Apply_loads. Set the proce-
dure to General and select
Static, General. Click on
Continue. Give the step a
description and click OK. In
the model tree, under steps,
and under Apply_loads, click
on Loads. Name the load
Pressure and select Pressure
as the type. Click on Con-
tinue. In the right-bottom cor-
ner of the viewport, click
on Surfaces. In the dialog
box, select loaded_Surface
and click on Continue. In the
new dialog box, enter −50
MPa (Figure 9.43).

FIGURE 9.43 Imposing a pressure load on a surface.

In the model tree, expand the Field Output Requests and then double click on F-Output-1.
F-Output-1 is the default and is automatically generated when creating the step. Uncheck the
variables Contact and select any other variable you wish to add to the field output. Click on OK.
Under Analysis, right click on Jobs and then click on Create.

In the Create Job dialog box, name the job Plate_LST and click on Continue. In the Edit Job
dialog box, enter a description for the job. Check Full analysis, select to run the job in Background,
and check to start it immediately. Click OK. Expand the tree under Jobs, right click on Plate_LST.
Then, click on Submit. If you get the following message Plate_LST completed successfully in the
bottom window, then your job is free of errors and was executed properly.

Under the top menu, in the Module scroll to Visualization, and click to load Abaqus Viewer.
On the main menu, under File, click Open, navigate to your working directory, and open the file
Plate_LST.odb. Click on the Common options icon to display the Common Plot options dialog
box. Under labels, check Show Element labels and Show Node labels if you wish to display
elements and nodes’ numbering. Click on the icon Plot Contours on deformed shape to display
the deformed shape of the beam. Under the main menu, select S and Max.In-Plane Principal to
plot the first principal stress as shown in Figure 9.44.

9.5.5.2 Keyword Edition

Except for simple geometries, it is very difficult to generate a mesh using keywords as we did previ-
ously. Hence, in this example, instead of writing an input file, we will simply open the one generated
previously by Abaqus. Navigate into the working directory and locate the file Plate_LST.inp and
open it with your preferred text editor. It is a very long file as it lists all the nodes, their coordinates,
and all the elements with their connectivity. Note that the two node sets created are present as well
as the surface. Scroll to the end of the file and locate:

**
** Name: Pressure Type: Pressure

*Dsload
Loaded_Surface, P, -50.

**
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FIGURE 9.44 Plotting the maximum in-plane principal stress (under tension).

FIGURE 9.45 Plotting the maximum in-plane principal stress (under compression).

Change the value of −50 to 50 to apply a compressive pressure. Rename the file
Plate_LST_Keyword.inp. Submit the job through the command line:

C:\WorkingDirectory>Abaqus job=Plate_LST_Keyword inter
When the job is successfully completed, start Abaqus viewer and open the file

Plate_LST_Keyword.odb. Click on the Common options icon to display the Common Plot
options dialog box. Under labels, check Show Element labels and Show Node labels if you wish
to display elements and nodes’ numbering. Click on the icon Plot Contours on deformed shape
to display the deformed shape of the beam. Under the main menu, select S and Max.In-Plane
Principal to plot the first principal stress, Figure 9.45. Now, compare with Figure 9.44.

9.6 THE BILINEAR QUADRILATERAL

The linear strain quadrilateral has four nodes and straight edges, as shown in Figure 9.46. Its shape
functions have already been obtained in Chapter 7, and they are also given here:
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FIGURE 9.46 Linear quadrilateral element.

N1(ξ, η) = 0.25(1 − ξ − η + ξη)

N2(ξ, η) = 0.25(1 + ξ − η − ξη)

N3(ξ, η) = 0.25(1 + ξ + η + ξη) (9.59)

N4(ξ, η) = 0.25(1 − ξ + η − ξη)

9.6.1 DISPLACEMENT FIELD

The displacement field over the element is approximated as

u = N1u1 + N2u2 + N3u3 + N4u4 (9.60)

v = N1v1 + N2v2 + N3v3 + N4v4 (9.61)

or in a matrix form as

{
u

v

}
=

[
N1 0 | N2 0 | N3 0 | N4 0

0 N1 | 0 N2 | 0 N3 | 0 N4

]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1

v1

u2

v2

u3

v3

u4

v4

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9.62)

or more compactly as

{U} = [N]{a} (9.63)

The element is isoparametric, therefore the shape functions Ni(ξ, η) also define the geometrical
transformation between the reference and the parent element. The coordinates x and y of any point
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of the parent element are given as

x = N1x1 + N2x2 + N3x3 + N4x4 (9.64)

y = N1y1 + N2y2 + N3y3 + N4y4 (9.65)

The Jacobian of the transformation is given as

[J] =

⎡
⎢⎢⎣

∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

4∑
i=1

∂Ni

∂ξ
xi

4∑
i=1

∂Ni

∂ξ
yi

4∑
i=1

∂Ni

∂η
xi

4∑
i=1

∂Ni

∂η
yi

⎤
⎥⎥⎥⎦

After deriving and rearranging, the Jacobian is written in the form of a product of two matrices:

[J] = 1

4

[−(1 − η) (1 − η) (1 + η) −(1 + η)

−(1 − ξ) −(1 + ξ) (1 + ξ) (1 − ξ)

]
⎡
⎢⎢⎢⎢⎣

x1 y1

x2 y2

x3 y3

x4 y4

⎤
⎥⎥⎥⎥⎦ (9.66)

9.6.2 STRAIN MATRIX

Substituting for the displacements u and v in Equation (9.6) using Equation (9.64), the strain vector
is obtained as

{ε} = [B]{a} (9.67)

with

[B] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂N1

∂x
0 | ∂N2

∂x
0 | ∂N3

∂x
0 | ∂N4

∂x
0

0
∂N1

∂y
| 0

∂N2

∂y
| 0

∂N3

∂y
| 0

∂N4

∂y

∂N1

∂y

∂N1

∂x
| ∂N2

∂y

∂N2

∂x
| ∂N3

∂y

∂N3

∂x
| ∂N4

∂y

∂N4

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(9.68)

To evaluate the matrix [B], it is necessary to relate the partial derivatives in the (x, y) coordinates to
the local coordinates (ξ, η). The derivative of the shape functions can be written as follows using
the chain rule:

∂Ni

∂ξ
= ∂Ni

∂x

∂x

∂ξ
+ ∂Ni

∂y

∂y

∂ξ
(9.69)

∂Ni

∂η
= ∂Ni

∂x

∂x

∂η
+ ∂Ni

∂y

∂y

∂η
(9.70)

which can be rewritten in matrix form as
⎧⎪⎪⎨
⎪⎪⎩

∂Ni

∂ξ

∂Ni

∂η

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎣

∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

∂Ni

∂x

∂Ni

∂y

⎫⎪⎪⎬
⎪⎪⎭

(9.71)
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The derivatives of the shape functions in the (x, y) system are obtained by inversing the previous
equation:

⎧⎪⎪⎨
⎪⎪⎩

∂Ni

∂x

∂Ni

∂y

⎫⎪⎪⎬
⎪⎪⎭

= [J]−1

⎡
⎢⎢⎣

∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

⎤
⎥⎥⎦ (9.72)

In practice, as it was shown with the linear strain triangle, the matrix [B] is not calculated but
assembled from the values of ∂Ni

∂x
and ∂Ni

∂y
obtained with Equation (9.72).

9.6.3 STIFFNESS MATRIX

The stiffness matrix of the element is given by

[Ke] =
[�

Ae

[B]T[D][B]t dA

]
(9.73)

The integration over the volume is evaluated using Gauss quadrature as

[Ke] = t
+1�

−1

+1�
−1

[B(ξ, η]T[D][B(ξ, η)]det[J(ξ, η)]dη dξ

= t
ngp∑
i=1

ngp∑
j=1

WiWj[B(ξi, ηj]T[D][B(ξi, ηj)]det[J(ξi, ηj)] (9.74)

where
t represents the thickness of the element
ngp the number of Gauss points

To integrate exactly the element, two Gauss points are required in each direction.

9.6.4 ELEMENT FORCE VECTOR

The element force vector is given by

{ fe} =
�
Ae

[N]T{b}t dA +
�
Le

[N]T{t}t dl +
∑

i

[N({x}={x})]T{P}i (9.75)

Considering that the body forces b are due to gravity, the first term of Equation (9.75) is evaluated
using Gauss quadrature:

�
Ae

[N]T{b}t dA = t
ngp∑
i=1

ngp∑
j=1

WiWj[N(ξi, ηj]T

{
0

−ρg

}
det[J(ξi, ηj)] (9.76)

To evaluate the second and third terms of Equation (9.76), it is better to proceed with an example
such as the one represented in Figure 9.47. The element is subject on side 3-4 to a surface traction
q that has a normal component qn and a tangential component qt as well as two concentrated forces
of magnitude P and 2P acting respectively on nodes 1 and 2.
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FIGURE 9.47 Element loading.

To be able to evaluate the second term on the right-hand side of Equation (9.76) that deals with
the surface traction, it is necessary to define a sign convention.

When the nodes of an element are numbered anticlockwise, as shown in Figure 9.47, a tangential force,
such as qt, is positive if it acts anticlockwise. A normal force, such as qn, is positive if it acts toward the
interior of the element.

The components qx and qy of the loads qn and qt are given by

qx = qtdL cos α − qndL sin α = qtdx − qndy

qy = qndL cos α + qtdL sin α = qndx + qtdy
(9.77)

Since in this case the integration will be carried out along the side (ξ, +1), then the following
variable changes, dx = ∂x

∂ξ
dξ and dy = ∂y

∂η
dη are appropriate. Substituting in Equation (9.77) yields

qx =
(

qt

∂x

∂ξ
− qn

∂y

∂ξ

)
dξ

qy =
(

qn

∂x

∂ξ
+ qt

∂y

∂ξ

)
dξ

(9.78)

Then the second term on the right-hand side of Equation (9.76) is therefore obtained as

�
Ae

[N]T

{
qx

qy

}
dA = t

�
L3−4

[N(ξ, +1)]T

{
qx

qy

}
dl

= t
ngp∑
i=1

Wi[N(ξi, +1)]T

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
qt

∂x(ξi, +1)

∂ξ
− qn

∂y(ξi, +1)

∂ξ

)

(
qn

∂x(ξi, +1)

∂ξ
+ qt

∂y(ξi, +1)

∂ξ

)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(9.79)
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FIGURE 9.48 Equivalent nodal loading.

Remark: In practice, when the loads are uniformly distributed they are replaced by equivalent nodal
loads as represented in Figure 9.48. The preceding development is to be used only if the shape of
the loading is complicated.

The third term on the right-hand side of Equation (9.76) relates to concentrated loads applied at
the nodes. At node 1, we have N1 = 1, N2 = 0, N3 = 0, N4 = 0, and at node 2, we have N1 = 0,
N2 = 1, N3 = 0, N4 = 0. It follows therefore

∑
k=1

[N]x=xk
{Pk} =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

0 1

0 0

0 0

0 0

0 0

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

{
0

−P

}
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0

0 0

1 0

0 1

0 0

0 0

0 0

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

{
2P

0

}
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

−P

2P

0

0

0

0

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9.80)

9.6.5 COMPUTER CODE: Q4_PLANE_STRESS.m

The program is virtually identical to its predecessor CST_PLANE_STRESS.m, except that the
stiffness matrix is computed using numerical integration with Gauss quadrature. The size of some of
the arrays has increased to account for extra degrees of freedom. In order to assess the performance
of the element, we will analyze once again the cantilever beam shown in Figure 9.7. We will use
12 elements to discretize the domain, as shown in Figure 9.49. The nodes numbered 19, 20, and 21
represent the fixed end. The program is listed next.

9.6.5.1 Data Preparation

To read the data, we will use the M-file Q4_COARSE_MESH_DATA.m listed next.

FILE: Q4_COARSE_MESH_DATA.m
% File: Q4_COARSE_MESH_DATA
%
global nnd nel nne nodof eldof n ngp
global geom connec dee nf Nodal_loads
%
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FIGURE 9.49 Finite element discretization with 4-nodded quadrilateral elements.

% To change the size of the mesh, alter the next statements
%
nnd = 21 ; % Number of nodes:
nel = 12; % Number of elements:
nne = 4 ; % Number of nodes per element:
nodof =2; % Number of degrees of freedom per node
ngp = 2 % number of Gauss points
eldof = nne*nodof; % Number of degrees of freedom per element
%
%
% Nodes coordinates x and y
geom = [0, -10.0; ... % x and y coordinates of node 1

0.0 0.0; ... % x and y coordinates of node 2
0.0 10.0; ... % x and y coordinates of node 3
10.0 -10.0; ... % x and y coordinates of node 4
10.0 0.0; ... % x and y coordinates of node 5
10.0 10.0; ... % x and y coordinates of node 6
20.0 -10.0; ... % x and y coordinates of node 7
20.0 0.0; ... % x and y coordinates of node 8
20.0 10.0; ... % x and y coordinates of node 9
30.0 -10.0; ... % x and y coordinates of node 10
30.0 0.0; ... % x and y coordinates of node 11
30.0 10.0; ... % x and y coordinates of node 12
40.0 -10.0; ... % x and y coordinates of node 13
40.0 0.0; ... % x and y coordinates of node 14
40.0 10.0; ... % x and y coordinates of node 15
50.0 -10.0; ... % x and y coordinates of node 16
50.0 0.0; ... % x and y coordinates of node 17
50.0 10.0; ... % x and y coordinates of node 18
60.0 -10.0; ... % x and y coordinates of node 19
60.0 0.0; ... % x and y coordinates of node 20
60.0 10.0]; % x and y coordinates of node 21

%
%
%
disp (’Nodes X-Y coordinates’)
geom
%
% Element connectivity
connec= [ 1 4 5 2 ;... % Element 1

2 5 6 3 ;... % Element 2
4 7 8 5 ;... % Element 3
5 8 9 6 ;... % Element 4
7 10 11 8 ;... % Element 5
8 11 12 9 ;... % Element 6
10 13 14 11 ;... % Element 7
11 14 15 12 ;... % Element 8

© 2013 by Taylor & Francis Group, LLC



286 Introduction to Finite Element Analysis Using MATLAB� and Abaqus

13 16 17 14 ;... % Element 9
14 17 18 15 ;... % Element 10
16 19 20 17 ;... % Element 11
17 20 21 18]; % Element 12

%
%
disp (’Elements connectivity’)
connec
%
E = 200000.; % Elastic modulus in MPa
vu = 0.3; % Poisson’s ratio
thick = 5.; % Beam thickness in mm
%
% Form the elastic matrix for plane stress
%
dee = formdsig(E,vu);
%
%
% Boundary conditions
%
nf = ones(nnd, nodof); % Initialize the matrix nf to 1
nf(19,:) = [0 0]; % Node 19 is restrained in the x and y directions
nf(20,:) = [0 0]; % Node 20 is restrained in the x and y directions
nf(21,:) = [0 0]; % Node 21 is restrained in the x and y directions
%
% Counting of the free degrees of freedom
%
n=0;
for i=1:nnd

for j=1:nodof
if nf(i,j) ~= 0

n=n+1;
nf(i,j)=n;

end
end

end
%
% loading
%
Nodal_loads= zeros(nnd, 2); % Initialize the matrix of nodal loads to 0
%
% Apply a concentrated at the node having x = 0, and y = 0.
%
Force = 1000.; % N
%
Nodal_loads(1,:) = [0. -Force];

The input data for this beam consist of

• nnd = 21; number of nodes
• nel = 12; number of elements
• nne = 4; number of nodes per element
• nodof = 2; number of degrees of freedom per node

The coordinates x and y of the nodes are given in the form of a matrix geom(nnd, 2). The element
connectivity is given in the matrix connec(nel, 4). Note that the internal numbering of the nodes is
anticlockwise.

As shown in Figure 9.49, nodes 19, 20, and 21 represent the fixed end of the cantilever which
is fully fixed. The prescribed degrees of freedom of these nodes are assigned the digit 0. All the
degrees of freedom of all the other nodes, which are free, are assigned the digit 1. The information
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on the boundary conditions is given in the matrix nf(nnd, nodof). The concentrated force of 1000 N
is applied at node 2. The force will be assembled into the global force vector fg in the main program.

9.6.5.2 Main Program

The main program Q4_PLANE_STRESS.m is listed next.

% THIS PROGRAM USES AN 4-NODDED QUADRILATERAL ELEMENT FOR THE LINEAR ELASTIC
% STATIC ANALYSIS OF A TWO DIMENSIONAL PROBLEM
%
% Make these variables global so they can be shared by other functions
%
clc
clear all
global nnd nel nne nodof eldof n ngp
global geom connec dee nf Nodal_loads
%
format long g
%
% To change the size of the problem or change the elastic properties
% supply another input file
%
Q4_COARSE_MESH_DATA
%
%%%%%%%%%%%%%%%%%%%%%%%%%% End of input%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Assemble the global force vector
%
fg=zeros(n,1);
for i=1: nnd

if nf(i,1) ~= 0
fg(nf(i,1))= Nodal_loads(i,1);

end
if nf(i,2) ~= 0

fg(nf(i,2))= Nodal_loads(i,2);
end

end
%
% Form the matrix containing the abscissas and the weights of Gauss points
%
ngp = 2;
samp=gauss(ngp);
%
% Numerical integration and assembly of the global stiffness matrix
%
% initialize the global stiffness matrix to zero
kk = zeros(n, n);
%
for i=1:nel

[coord,g] = elem_q4(i) ; % coordinates of the nodes of element i,
% and its steering vector

ke=zeros(eldof,eldof) ; % Initialize the element stiffness matrix
% to zero

for ig=1: ngp
wi = samp(ig,2);

for jg=1: ngp
wj=samp(jg,2);
[der,fun] = fmlin(samp, ig,jg); % Derivative of shape functions

%in local coordinates
jac=der*coord; % Compute Jacobian matrix
d=det(jac); % Compute determinant of Jacobian

% matrix
jac1=inv(jac); % Compute inverse of the Jacobian
deriv=jac1*der; % Derivative of shape functions
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% in global coordinates
bee=formbee(deriv,nne,eldof); % Form matrix [B]
ke=ke + d*thick*wi*wj*bee’*dee*bee; % Integrate stiffness matrix

end
end
kk=form_kk(kk,ke, g); % assemble global stiffness matrix

end
%
%
%%%%%%%%%%%%%%%%%%%%%%% End of assembly %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
delta = kk\fg ; % solve for unknown displacements
%
disp(’node x_disp y_disp ’) %
for i=1: nnd %

if nf(i,1) == 0 %
x_disp =0.; %

else
x_disp = delta(nf(i,1)); %

end
%

if nf(i,2) == 0 %
y_disp = 0.; %

else
y_disp = delta(nf(i,2)); %

end
disp([i x_disp y_disp]) % Display displacements of each node
DISP(i,:) = [x_disp y_disp]
end
%
%
ngp=1; % Calculate stresses and strains at

%the center of each element
samp=gauss(ngp);
%
for i=1:nel

[coord,g] = elem_q4(i); % coordinates of the nodes of element i,
% and its steering vector

eld=zeros(eldof,1); % Initialize element displacement to zero
for m=1:eldof %

if g(m)==0 %
eld(m)=0.; %

else %
eld(m)=delta(g(m)); % Retrieve element displacement from the

% global displacement vector
end

end
%

for ig=1: ngp
wi = samp(ig,2);

for jg=1: ngp
wj=samp(jg,2);
[der,fun] = fmlin(samp, ig,jg); % Derivative of shape functions

% in local coordinates
jac=der*coord; % Compute Jacobian matrix
jac1=inv(jac); % Compute inverse of the Jacobian
deriv=jac1*der; % Derivative of shape functions

% in global coordinates
bee=formbee(deriv,nne,eldof); % Form matrix [B]
eps=bee*eld % Compute strains
sigma=dee*eps % Compute stresses

end
end
SIGMA(i,:)=sigma ; % Store stresses for all elements

end
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%
% Average stresses at nodes
%
[ZX, ZY, ZT, Z1, Z2]=stresses_at_nodes_Q4(SIGMA);
%
%
% Plot stresses in the x_direction
%
U2 = DISP(:,2);
cmin = min(U2);
cmax = max(U2);
caxis([cmin cmax]);
patch(’Faces’, connec, ’Vertices’, geom, ’FaceVertexCData’,U2,...

’Facecolor’,’interp’,’Marker’,’.’);
colorbar;

9.6.5.3 Integration of the Stiffness Matrix

The stiffness matrix of the element is given by Equation (9.74). For each element, it is evaluated as
follows:

1. For every element i = 1 to nel
2. Retrieve the coordinates of its nodes coord(nne, 2) and its steering vector g(eldof) using

the function elem_Q4.m
3. Initialize the stiffness matrix to zero

a. Loop over the Gauss points ig = 1 to ngp
b. Retrieve the weight wi as samp(ig, 2)

i. Loop over the Gauss points jg = 1 to ngp
ii. Retrieve the weight wj as samp(jg, 2)

iii. Use the function fmlin.m to compute the shape functions, vector fun, and
their derivatives, matrix der, in local coordinates, ξ = samp(ig, 1) and
η = samp(jg, 1).

iv. Evaluate the Jacobian jac = der ∗ coord
v. Evaluate the determinant of the Jacobian as d = det(jac)

vi. Compute the inverse of the Jacobian as jac1 = inv(jac)
vii. Compute the derivatives of the shape functions with respect to the global

coordinates x and y as deriv = jac1 ∗ der
viii. Use the function formbee.m to form the strain matrix bee

ix. Compute the stiffness matrix as ke = ke + d ∗ thick ∗ wi ∗ wj ∗ bee′ ∗ dee ∗ bee
4. Assemble the stiffness matrix ke into the global matrix kk

The evaluation of the stiffness matrix requires the use of Gauss quadrature. To do so, the abscissas
and the weight of the corresponding Gauss points need to be made available to the program. These
are arranged in the array samp(ngp, 2) organized as follows:

ξi = samp(i, 1) and Wi = samp(i, 2) (9.81)

The MATLAB function gauss.m is listed in Appendix A and can be used for up to ngp = 4.
The function elem_q4.m is also listed in Appendix A. It returns the coordinates of the nodes of
each element as well as its steering vector textbfg. The function fmlin.m also listed in Appendix A
returns the shape functions, vector fun, and their derivatives, matrix der, in local coordinates.
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9.6.5.4 Computation of the Stresses and Strains

Once the global system of equations is solved, we will compute the stresses at the centroid of the
elements. For this we set ngp = 1.

1. For each element
2. Retrieve the coordinates of its nodes coord(nne, 2) and its steering vector g(eldof) using

the function elem_Q4.m
3. Retrieve its nodal displacements eld(eldof) from the global vector of displacements

delta(n)

a. Loop over the Gauss points ig = 1 to ngp
b. Loop over the Gauss points jg = 1 to ngp
c. Use the function fmlin.m to compute the shape functions, vector fun, and their local

derivatives, der, at the local coordinates ξ = samp(ig, 1) and η = samp(jg, 1)

d. Evaluate the Jacobian jac = der ∗ coord
e. Evaluate the determinant of the Jacobian as d = det(jac)
f. Compute the inverse of the Jacobian as jac1 = inv(jac)
g. Compute the derivatives of the shape functions with respect to the global coordinates x

and y as deriv = jac1 ∗ der
h. Use the function formbee.m to form the strain matrix bee
i. Compute the strains as eps = bee ∗ eld
j. Compute the stresses as sigma = dee ∗ eps

4. Store the stresses in the matrix SIGMA(nel, 3)

The stresses computed at the centers of the elements are averaged at the nodes using the function
Stresses_at_nodes_Q4.m, listed in Appendix A, which returns σx, σx, τx, σ1, and σ2. In the present
case, we can either feed any of the stresses or the displacements of the nodes to the MATLAB
function patch, with the argument ‘interp’ to interpolate between the values at the nodes and get
contour plots.

Figures 9.50 and 9.51 show respectively the contours of the vertical displacement v2 and of the
stress σxx. It can be clearly seen that the displacement of the tip, equal to 0.104 mm, is very close
to the exact displacement, equal to 1.108 mm obtained with Equation (9.41). On the other hand, the
stresses are not correct. This is not a problem with the element but rather with the calculations of
the stresses in the program. Indeed, in the program the stresses are calculated at the center of the
elements then averaged at the nodes. The maximum stress of about 75 MPa represents the value at
the center of the element.
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FIGURE 9.50 Contour of the vertical displacement v2.
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FIGURE 9.51 Contour of the stress σxx.

9.6.5.5 Program with Automatic Mesh Generation

To better model the stress gradient, we need to refine the mesh. In the new program named
Q4_PLANE_STRESS_MESH.m, listed next, the mesh is automatically created by calling the func-
tion Q4_mesh.m. This function prepares the elements’ connectivity and nodal geometry matrices,
and is listed after the main program.

% THIS PROGRAM USES AN 4-NODDED QUADRILATERAL ELEMENT FOR THE LINEAR ELASTIC
% STATIC ANALYSIS OF A TWO DIMENSIONAL PROBLEM
%
% Make these variables global so they can be shared by other functions
%
clc
clear all
global nnd nel nne nodof eldof n ngp
global geom connec dee nf Nodal_loads
global Length Width NXE NYE X_origin Y_origin dhx dhy
%
format long g
%
% To change the size of the mesh, alter the next statements
%
Length = 60.; % Length of the model
Width =20.; % Width
NXE = 24; % Number of rows in the x direction
NYE = 8; % Number of rows in the y direction
dhx = Length/NXE; % Element size in the x direction
dhy = Width/NYE; % Element size in the x direction
X_origin = 0. ; % X origin of the global coordinate system
Y_origin = Width/2. ; % Y origin of the global coordinate system
%
nne = 4;
nodof = 2;
eldof = nne*nodof;
%
Q4_mesh % Generate the mesh
%
E = 200000.; % Elastic modulus in MPa
vu = 0.3; % Poisson’s ratio
thick = 5.; % Beam thickness in mm
%
% Form the elastic matrix for plane stress
%
dee = formdsig(E,vu);
%
%
% Boundary conditions
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%
nf = ones(nnd, nodof); % Initialize the matrix nf to 1
%
% Restrain in all directions the nodes situated @
% (x = Length)
%
for i=1:nnd

if geom(i,1) == Length;
nf(i,:) = [0 0];

end
end
%
% Counting of the free degrees of freedom
%
n=0; for i=1:nnd

for j=1:nodof
if nf(i,j) ~= 0

n=n+1;
nf(i,j)=n;

end
end

end
%
% loading
%
Nodal_loads= zeros(nnd, 2); % Initialize the matrix of nodal loads to 0
%
% Apply a concentrated at the node having x = 0, and y = 0.
%
Force = 1000.; % N
%
for i=1:nnd

if geom(i,1) == 0. && geom(i,2) == 0.
Nodal_loads(i,:) = [0. -Force];

end
end
%
%%%%%%%%%%%%%%%%%%%%%%%%%% End of input%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Assemble the global force vector
%
fg=zeros(n,1);
for i=1: nnd

if nf(i,1) ~= 0
fg(nf(i,1))= Nodal_loads(i,1);

end
if nf(i,2) ~= 0

fg(nf(i,2))= Nodal_loads(i,2);
end

end
%
% Form the matrix containing the abscissas and the weights of Gauss points
%
ngp = 2;
samp=gauss(ngp);
%
% Numerical integration and assembly of the global stiffness matrix
%
% initialize the global stiffness matrix to zero
kk = zeros(n, n);
%
for i=1:nel

[coord,g] = elem_q4(i) ; % coordinates of the nodes of element i,
% and its steering vector

ke=zeros(eldof,eldof) ; % Initialize the element stiffness
% matrix to zero

for ig=1: ngp
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wi = samp(ig,2);
for jg=1: ngp

wj=samp(jg,2);
[der,fun] = fmlin(samp, ig,jg); % Derivative of shape functions

% in local coordinates
jac=der*coord; % Compute Jacobian matrix
d=det(jac); % Compute determinant of Jacobian

% matrix
jac1=inv(jac); % Compute inverse of the Jacobian
deriv=jac1*der; % Derivative of shape functions in

% global coordinates
bee=formbee(deriv,nne,eldof); % Form matrix [B]
ke=ke + d*thick*wi*wj*bee’*dee*bee; % Integrate stiffness matrix

end
end
kk=form_kk(kk,ke, g); % assemble global stiffness matrix

end
%
%
%%%%%%%%%%%%%%%%%%%%%%% End of assembly %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
delta = kk\fg ; % solve for unknown displacements
%
disp(’node x_disp y_disp ’) %
for i=1: nnd %

if nf(i,1) == 0 %
x_disp =0.; %

else
x_disp = delta(nf(i,1)); %

end
%

if nf(i,2) == 0 %
y_disp = 0.; %

else
y_disp = delta(nf(i,2)); %

end
disp([i x_disp y_disp]) % Display displacements of each node
DISP(i,:) = [x_disp y_disp]
end

%
%
ngp=1; % Calculate stresses and strains at

%the center of each element
samp=gauss(ngp);
%
for i=1:nel

[coord,g] = elem_q4(i); % coordinates of the nodes of element i,
% and its steering vector

eld=zeros(eldof,1); % Initialize element displacement to zero
for m=1:eldof %

if g(m)==0 %
eld(m)=0.; %

else %
eld(m)=delta(g(m)); % Retrieve element displacement from the

% global displacement vector
end

end
%

for ig=1: ngp
wi = samp(ig,2);

for jg=1: ngp
wj=samp(jg,2);
[der,fun] = fmlin(samp, ig,jg); % Derivative of shape functions in

% local coordinates
jac=der*coord; % Compute Jacobian matrix
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jac1=inv(jac); % Compute inverse of the Jacobian
deriv=jac1*der; % Derivative of shape functions in

% global coordinates
bee=formbee(deriv,nne,eldof); % Form matrix [B]
eps=bee*eld % Compute strains
sigma=dee*eps % Compute stresses

end
end
SIGMA(i,:)=sigma ; % Store stresses for all elements

end
%
% Average stresses at nodes
%
[ZX, ZY, ZT, Z1, Z2]=stresses_at_nodes_Q4(SIGMA);
%
%
% Plot stresses in the x_direction
%
U2 = DISP(:,2);
cmin = min(U2);
cmax = max(U2);
caxis([cmin cmax]);
patch(’Faces’, connec, ’Vertices’, geom, ’FaceVertexCData’,U2, ...

’Facecolor’,’interp’,’Marker’,’.’);
colorbar;

Q4_mesh.m
% This module generates a mesh of linear quadrilateral elements
%
global nnd nel nne nodof eldof n
global geom connec dee nf Nodal_loads
global Length Width NXE NYE X_origin Y_origin dhx dhy
%
%
nnd = 0;
k = 0;
for i = 1:NXE

for j=1:NYE
k = k + 1;
n1 = j + (i-1)*(NYE + 1);
geom(n1,:) = [(i-1)*dhx - X_origin (j-1)*dhy - Y_origin ];
n2 = j + i*(NYE+1);
geom(n2,:) = [i*dhx - X_origin (j-1)*dhy - Y_origin ];
n3 = n1 + 1;
geom(n3,:) = [(i-1)*dhx - X_origin j*dhy - Y_origin ];
n4 = n2 + 1;
geom(n4,:) = [i*dhx- X_origin j*dhy - Y_origin ];
nel = k;
connec(nel,:) = [n1 n2 n4 n3];
nnd = n4;
end

end
%

The variables NXE and NYE represent respectively the number of intervals along the x and y
directions, as shown in Figure 9.52. For each interval i and j, four nodes n1, n2, n3, and n4 and one
element are created. The element has nodes n1, n2, n4, n3. In total the number of elements and nodes
created are respectively equal to nel = NXE×NYE, and nnd = (NXE+1)×(NYE+1). The module
also returns the matrices geom(nnd, 2) and connec(nel, nne). The results obtained with the fine mesh
are displayed in Figures 9.53 and 9.54 respectively as contour plots of the vertical displacement v2

and the stress σxx. The stress values are more accurate. They are very similar to those obtained with
the linear strain triangular element shown in Figure 9.13.
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FIGURE 9.52 Automatic mesh generation with the Q4 element.
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FIGURE 9.53 Contour of the vertical displacement v2.
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FIGURE 9.54 Contour of the stresses along the x-axis σxx.

9.6.6 ANALYSIS WITH ABAQUS USING THE Q4 QUADRILATERAL

9.6.6.1 Interactive Edition

In this section, we will analyze the cantilever beam shown in Figure 9.7 with the Abaqus interactive
edition. We keep the same geometrical properties, C = 10 mm, L = 60 mm, t = 5 mm, the same
mechanical properties, a Young’s modulus of 200000 MPa and a Poisson’s ratio of 0.3 and the same
loading; a concentrated force P of 1000 N.
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Start Abaqus CAE. Click on
Create Model Database. On
the main menu, click on File
and set Set Work Directory
to choose your working direc-
tory. Click on Save As and
name the file BEAM_Q4.cae.
On the left-hand-side menu,
click on Part to begin creat-
ing the model. Name the part
Beam_Q4, check 2D Pla-
nar, and check Deformable
in the type. Choose Shell as
the base feature. Enter an
approximate size of 100 mm
and click on Continue. In
the sketcher menu, choose the
Create-Lines Rectangle icon
to begin drawing the geom-
etry of the beam. Click on
Done in the bottom-left cor-
ner of the viewport window
(Figure 9.55).

FIGURE 9.55 Creating the Beam_Q4 Part.

If we want to make sure that
we will have nodes lying on
the neutral axis of the beam,
it is advisable to partition the
beam along the neutral axis.
On the main menu, click on
Tools then on Partition. In
the dialog box, check Face in
Type, and Use shortest path
between 2 points in Method.
Select the two end points as
shown in Figure 9.56, and
in the prompt area, click on
Create partition.

FIGURE 9.56 Creating a partition.
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Define a material named steel
with an elastic modulus of
200000 MPa and a Poisson’s
ratio of 0.3. Next, click on
Sections to create a section
named Beam_section_Q4. In
the Category check Solid,
and in the Type, check Homo-
geneous. Click on Con-
tinue. In the Edit Section
dialog box, check Plane
stress/strain thickness and
enter 5 mm as the thickness.
Click on OK (Figure 9.57).

FIGURE 9.57 Creating a plane stress section.

Expand the menu under Parts
and BEAM_Q4, and dou-
ble click on Section Assign-
ments. With the mouse
select the whole part. In
the Edit Section Assign-
ments dialog box, select
Beam_section_Q4, and click
on OK (Figure 9.58).

FIGURE 9.58 Editing section assignments.

In the model tree, dou-
ble click on Mesh under
the BEAM_Q4. In the main
menu, under Mesh, click on
Mesh Controls. In the dialog
box, check Quad for Ele-
ment shape and Structured
for Technique. Click on OK
(Figure 9.59).

FIGURE 9.59 Mesh controls.
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In the main menu, under
Mesh, click on Element
Type. With the mouse select
all the part in the viewport.
In the dialog box, select Stan-
dard for element library, Lin-
ear for geometric order. In
Quad, check Reduced inte-
gration. The description of
the element CPS4R: A 4-
node bilinear plane stress
quadrilateral, reduced inte-
gration, hourglass control
can be seen in the dialog box.
Click on OK (Figure 9.60).

FIGURE 9.60 Selecting element type.

In the main menu, under Seed,
click on Part. In the dialog
box, enter 5 for Approximate
global size. Click on OK and
on Done (Figure 9.61).

FIGURE 9.61 Seeding part by size.

In the main menu, under
Mesh, click on Part. In the
prompt area, click on Yes. In
the main menu select View,
then Part Display Options.
In the Part Display Options,
under Mesh, check Show
node labels and Show ele-
ment labels. Click Apply.
The element and node labels
will appear in the viewport
(Figure 9.62).

FIGURE 9.62 Mesh.
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In the model tree, expand the
Assembly and double click on
Instances. Select BEAM_Q4 for
Parts and click OK. In the
model tree, expand Steps and
Initial and double click on
BC. Name the boundary condi-
tion FIXED, select Symmetry/
Antisymmetry/Encastre for the
type, and click on Continue. Keep
the shift key down, and with the
mouse select the right edge and
click on Done in the prompt area.
In the Edit Boundary Condition
check ENCASTRE. Click OK
(Figure 9.63).

FIGURE 9.63 Imposing BC using geometry.

In the model tree, double
click on Steps. Name the step
Apply_loads. Set the proce-
dure to General, and select
Static, General. Click on
Continue. Give the step a
description and click OK. In
the model tree, under steps,
and under Apply_loads, click
on Loads. Name the load
Point_Load and select Con-
centrated Force as the type.
Click on Continue. Using the
mouse click on the middle
of the left edge and click on
Done in the prompt area. In
the Edit Load dialog box,
enter −1000 for CF2. Click
OK (Figure 9.64).

FIGURE 9.64 Imposing a concentrated force using
geometry.

In the model tree, expand the Field Output Requests and then double click on F-Output-1.
F-Output-1 is the default and is automatically generated when creating the step. Uncheck the
variables Contact and select any other variable you wish to add to the field output. Click on OK.
Under Analysis, right click on Jobs and then click on Create.

In the Create Job dialog box, name the job BEAM_Q4 and click on Continue. In the Edit Job
dialog box, enter a description for the job. Check Full analysis, select to run the job in Background,
and check to start it immediately. Click OK. Expand the tree under Jobs, right click on BEAM_Q4.
Then, click on Submit. If you get the following message BEAM_Q4 completed successfully in
the bottom window, then your job is free of errors and was executed properly. Under the top menu,
in the Module scroll to Visualization, and click to load Abaqus Viewer. On the main menu, under
File, click Open, navigate to your working directory, and open the file BEAM_Q4.odb. It should
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FIGURE 9.65 Plotting displacements on deformed and undeformed shapes.

have the same name as the job you submitted. Click on the Common options icon to display the
Common Plot options dialog box. Under labels, check Show Element labels and Show Node
labels to display elements and nodes’ numbering. Click on the icon Plot Contours on both shapes
to display the deformed shape of the beam. Under the main menu, select U and U2 to plot the
vertical displacement. It can be seen that the displacement of the left edge is equal to −0.1263 mm,
which is almost similar to the analytical solution and the results obtained with the MATLAB code
(Figure 9.65).

In the menu bar, click on Report and Field Output. In the Report Field Output dialog box, for
Position select Unique nodal, check U1, and U2 under U: Spatial displacement. Then, click on
Set up. Click on Select to navigate to your working directory. Name the file BEAM_Q4.rpt. Uncheck
Append to file and click OK. Use your favorite text editor and open the file BEAM_Q4.rpt, which
should be the same as the one listed next:

*********************************************************
Field Output Report, written Tue Jun 07 14:16:55 2011

Source 1
---------

ODB: C:/ABAQUS_FILES/BEAM_Q4.odb
Step: Apply_loads
Frame: Increment 1: Step Time = 1.000

Loc 1 : Nodal values from source 1

Output sorted by column "Node Label".

Field Output reported at nodes for part: BEAM_Q4-1

Node U.U1 U.U2
Label @Loc 1 @Loc 1

-------------------------------------------------
1 -329.597E-18 -126.304E-03
2 -0. -106.912E-36
3 -1.90702E-33 -399.459E-36
4 -28.2845E-03 -124.280E-03
5 28.2845E-03 -124.280E-03
6 1.90702E-33 -399.459E-36
7 208.167E-18 -105.542E-03
8 -176.942E-18 -95.1550E-03
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9 60.2816E-18 -77.1076E-03
10 -63.7511E-18 -66.2657E-03
11 -18.8276E-18 -50.6013E-03
12 2.05998E-18 -40.7127E-03
13 -37.2966E-18 -28.0818E-03
14 14.2030E-18 -19.9475E-03
15 -35.9684E-18 -11.1797E-03
16 9.86624E-18 -5.59480E-03
17 -11.6891E-18 -1.24520E-03
18 -2.18595E-33 -47.0851E-36
19 -4.78542E-03 -2.79632E-03
20 -8.88433E-03 -6.86775E-03
21 -12.5353E-03 -12.2002E-03
22 -16.1799E-03 -20.9244E-03
23 -18.9209E-03 -28.9212E-03
24 -21.7734E-03 -41.4322E-03
25 -23.7241E-03 -51.1911E-03
26 -25.7807E-03 -66.7828E-03
27 -26.8659E-03 -77.4101E-03
28 -28.3401E-03 -95.3045E-03
29 -28.3412E-03 -106.447E-03
30 -14.5331E-03 -120.582E-03
31 14.5331E-03 -120.582E-03
32 28.3412E-03 -106.447E-03
33 28.3401E-03 -95.3045E-03
34 26.8659E-03 -77.4101E-03
35 25.7807E-03 -66.7828E-03
36 23.7241E-03 -51.1911E-03
37 21.7734E-03 -41.4322E-03
38 18.9209E-03 -28.9212E-03
39 16.1799E-03 -20.9244E-03
40 12.5353E-03 -12.2002E-03
41 8.88433E-03 -6.86775E-03
42 4.78542E-03 -2.79632E-03
43 2.18595E-33 -47.0851E-36
44 -14.3650E-03 -110.266E-03
45 -13.5899E-03 -91.3903E-03
46 -13.3946E-03 -80.4582E-03
47 -12.5300E-03 -63.5695E-03
48 -11.7534E-03 -53.1450E-03
49 -10.5325E-03 -38.9201E-03
50 -9.35962E-03 -29.8439E-03
51 -7.72590E-03 -19.0591E-03
52 -6.15508E-03 -12.1474E-03
53 -4.20098E-03 -5.59630E-03
54 -1.92738E-03 -1.67195E-03
55 1.92738E-03 -1.67195E-03
56 4.20098E-03 -5.59630E-03
57 6.15508E-03 -12.1474E-03
58 7.72590E-03 -19.0591E-03
59 9.35962E-03 -29.8439E-03
60 10.5325E-03 -38.9201E-03
61 11.7534E-03 -53.1450E-03
62 12.5300E-03 -63.5695E-03
63 13.3946E-03 -80.4582E-03
64 13.5899E-03 -91.3903E-03
65 14.3650E-03 -110.266E-03

Minimum -28.3412E-03 -126.304E-03
At Node 29 1

Maximum 28.3412E-03 -47.0851E-36
At Node 32 43

Total -388.578E-18 -3.15015
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FIGURE 9.66 Generating a mesh manually in Abaqus.

9.6.6.2 Keyword Edition

In this section, we will use a text editor to prepare an input file for the cantilever beam. We will refine
the mesh by using 10 elements along the y-axis and 30 elements along the longitudinal direction. In
total, there will be 300 elements and 342 nodes. The corner nodes are shown in Figure 9.66.

The file is named BEAM_Q4_Keyword.inp and is listed next:

*Heading
Analysis of cantilever beam as a plane stress problem using
the 4-node bilinear quadrilateral

*Preprint, echo=YES

**
**
** Node generation

**
**
*NODE
1, 0., 0.
11, 0., 20.
331, 60., 0.
342, 60., 20.

*NGEN,NSET=Left_Edge
1,11

*NGEN,NSET=Right_Edge
331,342

*NFILL
Left_Edge,Right_Edge,30,11

*NSET, NSET = Loaded_node
6

**
** Element generation

**
*ELEMENT,TYPE=CPS4R
1, 1, 12, 13, 2

*ELGEN, ELSET = All_Elements
1, 10, 1, 1, 30, 11, 10

**
*MATERIAL, NAME =STEEL

*ELASTIC
200000., 0.3

*SOLID SECTION, ELSET = All_Elements, MATERIAL = STEEL
5.

**
** BOUNDARY CONDITIONS

**
**
*Boundary
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Right_Edge, encastre

**
** STEP: Apply_Loads

**
*Step, name=Apply_Loads

*Static
1., 1., 1e-05, 1.

**
** LOADS

**
*Cload
Loaded_node, 2, -1000.

**
**
** OUTPUT REQUESTS

**
**
*Output, field, variable=PRESELECT

**
*Output, history, variable=PRESELECT

*End Step

1. The input file always starts with the keyword *HEADING, which in this case is entered
as Analysis of cantilever beam as a plane stress problem using the 4-node bilinear
quadrilateral.

2. Using *Preprint, echo=YES will allow to print an echo of the input file to the file with
an extension *.dat

3. Using the keyword *Node, we define the four corner nodes 1, 11, 331, and 342, as shown
in Figure 9.66.

4. Using the keyword *NGEN, we generate the nodes located on the left edge. In the data
line, we enter the number of the first end node 1, which has been previously defined, then
the number of the second end node 11, which also must have been previously defined,
followed by the increment in the numbers between each node along the line, which in this
case is the default 1. We then group the nodes in a set named Left_Edge.

5. Using the keyword *NGEN again, we generate the nodes located on the right edge and
group them in a set named Right_Edge.

6. Using the keyword *NFILL, we generate all the remaining nodes by filling in nodes
between two bounds. In the data line, we enter first the node sets Left_Edge and
Right_Edge followed by the number of intervals along each line between bounding nodes,
in this case 30, and the increment in node numbers from the node number at the first bound
set end, which in this case is 11.

7. Using the keyword *NSET, NSET = Loaded_node, we create a node set containing node
6. This will be used to apply the concentrated load of 1000 N.

8. Using the keyword *ELEMENT and Type = CPS4R, which stands for a continuum plane
stress four node quadrilateral, we define element 1 as well as its connectivity.

9. Using the keyword *ELGEN we generate all the elements that we group in the set
All_elements. The keyword *ELGEN requires in its data line:
a. Master element number.
b. Number of elements to be defined in the first row generated, including the master

element.
c. Increment in node numbers of corresponding nodes from element to element in the row.

The default is 1.
d. Increment in element numbers in the row. The default is 1.
e. If necessary, copy this newly created master row to define a layer of elements.
f. Number of rows to be defined, including the master row. The default is 1.
g. Increment in node numbers of corresponding nodes from row to row.
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FIGURE 9.67 Mesh generated with the keyword edition.

h. Increment in element numbers of corresponding elements from row to row.
i. If necessary, copy this newly created master layer to define a block of elements (only

necessary for a 3D mesh).
j. Number of layers to be defined, including the master layer. The default is 1.
k. Increment in node numbers of corresponding nodes from layer to layer.
l. Increment in element numbers of corresponding elements from layer to layer.

10. Using the keywords *Material and *elastic, we define a material named steel having an
elastic modulus of 200,000 MPa and a Poisson’s ratio of 0.3.

11. Using the keyword *solid section, we assign the material steel to all the elements, and in
the data line we enter the thickness of the domain, which in this case is 5 mm.

12. Using the created node sets, we impose the boundary conditions with the keyword
*Boundary. We fully fix the node set Right_Edge by using encastre.

13. Next using the keyword *step, we create a step named Apply_Loads. The keyword *static
indicates that it will be a general static analysis.

14. Using the keyword *cload, we apply a concentrated load of −1000 N in the direction 2 to
the node in node set Loaded_node.

15. Using the keywords *Output, field, variable=PRESELECT, and *Output, history,
variable=PRESELECT we request the default variables for both field and history outputs.

16. Finally, we end the step and the file with *End Step.

At the command line type Abaqus job=BEAM_Q4_Keyword inter is followed by Return. If you
get an error, open the file with extension *.dat to see what type of error. To load the visualization
model, type Abaqus Viewer at the command line (Figure 9.67).

On the main menu, under File, click Open, navigate to your working directory, and open the
file BEAM_Q4_Keyword.odb. Click on the Common options icon to display the Common Plot
options dialog box. Under labels, check Show Element labels and Show Node labels to display the
mesh generated. Uncheck Show Element labels and Show Node labels, then click on the icon Plot
Deformed Shape to display the deformed shape of the beam. On the main menu, click on Results
then on Field Output to open the Field Output dialog box. Choose U Spatial displacements at
nodes. For component, choose U2 to plot the vertical displacement (Figure 9.68).

9.7 THE 8-NODE QUADRILATERAL

9.7.1 FORMULATION

The 8-nodded quadrilateral element has curved sides, which makes it very useful in modeling
structures with curved edges (Figure 9.69). The element shape functions are given as
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FIGURE 9.68 Displacement contour.
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FIGURE 9.69 Eight-nodded isoparametric element.
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N1(ξ, η)

N2(ξ, η)

N3(ξ, η)

N4(ξ, η)

N5(ξ, η)

N6(ξ, η)

N7(ξ, η)

N8(ξ, η)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−0.25(1 − ξ)(1 − η)(1 + ξ + η)

0.50(1 − ξ2)(1 − η)

−0.25(1 + ξ)(1 − η)(1 − ξ + η)

0.50(1 + ξ)(1 − η2)

−0.25(1 + ξ)(1 + η)(1 − ξ − η)

0.50(1 − ξ2)(1 + η)

−0.25(1 − ξ)(1 + η)(1 + ξ − η)

0.50(1 − ξ)(1 − η2)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9.82)

The displacement field over the element is approximated as

u = N1u1 + N2u2 + N3u3 + N4u4 + N5u5 + N6u6 + N7u7 + N8u8 (9.83)

v = N1v1 + N2v2 + N3v3 + N4v4 + N5v5 + N6v6 + N7v7 + N8v8 (9.84)
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or in a matrix form as

{
u

v

}
=

[
N1 0 | N2 0 | . . . . . . | N8 0

0 N1 | 0 N2 | . . . . . . | 0 N8

]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1

v1

u2

v2

...

...

u8

v8

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(9.85)

or more compactly as

{U} = [N]{a} (9.86)

The element is isoparametric, therefore the shape functions Ni(ξ, η) also define the geometrical
transformation between the reference and the parent element. The coordinates x and y of any point
of the parent element are given as

x = N1x1 + N2x2 + · · · + N8x8 (9.87)

y = N1y1 + N2y2 + · · · + N8y8 (9.88)

The Jacobian of the transformation is given as

[J] =

⎡
⎢⎢⎣

∂x

∂ξ

∂y

∂ξ

∂x

∂η

∂y

∂η

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

8∑
i=1

∂Ni

∂ξ
xi

8∑
i=1

∂Ni

∂ξ
yi

8∑
i=1

∂Ni

∂η
xi

8∑
i=1

∂Ni

∂η
yi

⎤
⎥⎥⎥⎦

After deriving and rearranging, the Jacobian is written in the form of a product of two matrices:

[J] =

⎡
⎢⎢⎣

∂N1

∂ξ

∂N2

∂ξ
. . .

∂N8

∂ξ

∂N1

∂η

∂N2

∂η
. . .

∂N8

∂η

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

x1 y1

x2 y2

...
...

x8 y8

⎤
⎥⎥⎥⎥⎥⎦

(9.89)

The strain matrix [B] is obtained as

[B] =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂N1

∂x
0 | ∂N2

∂x
0 | . . . . . . | ∂N8

∂x
0

0
∂N1

∂y
| 0

∂N2

∂y
| . . . . . . | 0

∂N4

∂y
∂N1

∂y

∂N1

∂x
| ∂N2

∂y

∂N2

∂x
| . . . . . . | ∂N4

∂y

∂N4

∂x

⎤
⎥⎥⎥⎥⎥⎥⎦

(9.90)

The stiffness matrix is obtained in the same way as for the bilinear quadrilateral element except that
it has got a dimension of 16 × 16 as there are 16 degrees of freedom per element.
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FIGURE 9.70 Equivalent nodal loads.
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FIGURE 9.71 Geometry and loading.

9.7.2 EQUIVALENT NODAL FORCES

When the shape of the loading on an element edge is complicated, the integration process detailed
in Section 9.6.4 should be used. However, if the loads are uniformly distributed then the equivalent
nodal loads shown in Figure 9.70 can be used.

9.7.3 PROGRAM Q8_PLANE_STRESS.m

The program is virtually identical to its predecessor Q4_PLANE_STRESS.m except that some of
the arrays have slightly bigger dimensions because of the increased number of degrees of freedom
per element. In order to assess the performance of the element, we will analyze the simply supported
deep beam subject to four-point bending shown in Figure 9.71. Taking advantage of symmetry, only
half the model is analyzed. We will use 32 elements to discretize the domain as shown in Figure 9.72.
The nodes numbered 113–121 represent the mid-span. These nodes are allowed to displace vertically
but not horizontally. The program is listed next.

9.7.3.1 Data Preparation

To read the data, we will use the M-file Q8_COARSE_MESH_DATA.m listed next.

FILE:Q8_COARSE_MESH_DATA.m
%
%%%%%%%%%%%%%%%%%%%%%%%%%% Beginning of data input %%%%%%%%%%%%%%%%%%%%%%%%%%%
%
global nnd nel nne nodof eldof n ngp
global geom connec dee nf Nodal_loads

%
nnd = 121 ; % Number of nodes:
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FIGURE 9.72 Coarse mesh.

nel = 32; % Number of elements:
nne = 8 ; % Number of nodes per element:
nodof =2; % Number of degrees of freedom per node
ngp = 2 % number of Gauss points
eldof = nne*nodof; % Number of degrees of freedom per element
%
% Thickness of the domain
thick = 100.
%
% Nodes coordinates x and y
%
geom = [ 0 0 ; ... % x and y coordinates of node 1

0 50 ; ...
0 100 ; ...
0 150 ; ...
0 200 ; ...
0 250 ; ...
0 300 ; ...
0 350 ; ...
0 400 ; ...
50 0 ; ...
50 100 ; ...
50 200 ; ...
50 300 ; ...
50 400 ; ...
100 0 ; ...
100 50 ; ...
100 100 ; ...
100 150 ; ...
100 200 ; ...
100 250 ; ...
100 300 ; ...
100 350 ; ...
100 400 ; ...
150 0 ; ...
150 100 ; ...
150 200 ; ...
150 300 ; ...
150 400 ; ...
200 0 ; ...
200 50 ; ...
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200 100 ; ...
200 150 ; ...
200 200 ; ...
200 250 ; ...
200 300 ; ...
200 350 ; ...
200 400 ; ...
250 0 ; ...
250 100 ; ...
250 200 ; ...
250 300 ; ...
250 400 ; ...
300 0 ; ...
300 50 ; ...
300 100 ; ...
300 150 ; ...
300 200 ; ...
300 250 ; ...
300 300 ; ...
300 350 ; ...
300 400 ; ...
350 0 ; ...
350 100 ; ...
350 200 ; ...
350 300 ; ...
350 400 ; ...
400 0 ; ...
400 50 ; ...
400 100 ; ...
400 150 ; ...
400 200 ; ...
400 250 ; ...
400 300 ; ...
400 350 ; ...
400 400 ; ...
450 0 ; ...
450 100 ; ...
450 200 ; ...
450 300 ; ...
450 400 ; ...
500 0 ; ...
500 50 ; ...
500 100 ; ...
500 150 ; ...
500 200 ; ...
500 250 ; ...
500 300 ; ...
500 350 ; ...
500 400 ; ...
550 0 ; ...
550 100 ; ...
550 200 ; ...
550 300 ; ...
550 400 ; ...
600 0 ; ...
600 50 ; ...
600 100 ; ...
600 150 ; ...
600 200 ; ...
600 250 ; ...
600 300 ; ...
600 350 ; ...
600 400 ; ...
650 0 ; ...
650 100 ; ...
650 200 ; ...
650 300 ; ...
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650 400 ; ...
700 0 ; ...
700 50 ; ...
700 100 ; ...
700 150 ; ...
700 200 ; ...
700 250 ; ...
700 300 ; ...
700 350 ; ...
700 400 ; ...
750 0 ; ...
750 100 ; ...
750 200 ; ...
750 300 ; ...
750 400 ; ...
800 0 ; ...
800 50 ; ...
800 100 ; ...
800 150 ; ...
800 200 ; ...
800 250 ; ...
800 300 ; ...
800 350 ; ...
800 400] ; % x and y coordinates of node 121

%
% Element connectivity
%

connec = [1 10 15 16 17 11 3 2 ; ... % Element 1
3 11 17 18 19 12 5 4 ; ...
5 12 19 20 21 13 7 6 ; ...
7 13 21 22 23 14 9 8 ; ...
15 24 29 30 31 25 17 16 ; ...
17 25 31 32 33 26 19 18 ; ...
19 26 33 34 35 27 21 20 ; ...
21 27 35 36 37 28 23 22 ; ...
29 38 43 44 45 39 31 30 ; ...
31 39 45 46 47 40 33 32 ; ...
33 40 47 48 49 41 35 34 ; ...
35 41 49 50 51 42 37 36 ; ...
43 52 57 58 59 53 45 44 ; ...
45 53 59 60 61 54 47 46 ; ...
47 54 61 62 63 55 49 48 ; ...
49 55 63 64 65 56 51 50 ; ...
57 66 71 72 73 67 59 58 ; ...
59 67 73 74 75 68 61 60 ; ...
61 68 75 76 77 69 63 62 ; ...
63 69 77 78 79 70 65 64 ; ...
71 80 85 86 87 81 73 72 ; ...
73 81 87 88 89 82 75 74 ; ...
75 82 89 90 91 83 77 76 ; ...
77 83 91 92 93 84 79 78 ; ...
85 94 99 100 101 95 87 86 ; ...
87 95 101 102 103 96 89 88 ; ...
89 96 103 104 105 97 91 90 ; ...
91 97 105 106 107 98 93 92 ; ...
99 108 113 114 115 109 101 100 ; ...
101 109 115 116 117 110 103 102 ; ...
103 110 117 118 119 111 105 104 ; ...
105 111 119 120 121 112 107 106 ]; % Element 32

%
% Material properties
%
E=40000; vu=0.17; % Young’s modulus and Poisson’s ratio
%
% Form the matrix of elastic properties
%
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dee=formdsig(E,vu); % Matrix of elastic properties for plane stress
%
% Boundary conditions
%
nf = ones(nnd, nodof); % Initialize the matrix nf to 1
%
for i=1:nnd

if geom(i,1) == 800.;
nf(i,:) = [0 1];

end
if geom(i,1) == 100. && geom(i,2) == 0.;

nf(i,:) = [1 0];
end

end
%
% Counting of the free degrees of freedom
%
n=0;
for i=1:nnd

for j=1:nodof
if nf(i,j) ~= 0

n=n+1;
nf(i,j)=n;

end
end

end
disp (’Nodal freedom’)
nf
disp (’Total number of active degrees of freedom’)
n
%
% loading
%
Nodal_loads = zeros(nnd, 2);
Nodal_loads(79,2)=-30000.; % Vertical load on node 79
%
% End input

The input data for this beam consist of

• nnd = 121; number of nodes
• nel = 32; number of elements
• nne = 8; number of nodes per element
• nodof = 2; number of degrees of freedom per node

The coordinates x and y of the nodes are given in the form of a matrix geom(nnd, 2). The element
connectivity is given in the matrix connec(nel, 8). Note that the internal numbering of the nodes is
anticlockwise.

As shown in Figure 9.72, nodes 113–121 are fixed in the x-direction only. Node 15, which
represents the simple support, is fixed in the y-direction only. The information on the boundary
conditions is given in the matrix nf(nnd, nodof). The concentrated force of 30000 N is applied at
node 79. Notice the negative sign to indicate that the force acts in the negative y-direction. The force
will be assembled into the global force vector fg in the main program.

9.7.3.2 Main Program

The main program Q8_PLANE_STRESS.m is listed next.

% THIS PROGRAM USES AN 8-NODDED QUADRILATERAL ELEMENT FOR THE LINEAR ELASTIC
% STATIC ANALYSIS OF A TWO DIMENSIONAL PROBLEM
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%
% Make these variables global so they can be shared by other functions
%
clc
clear all
global nnd nel nne nodof eldof n ngp
global geom connec dee nf Nodal_loads
%
format long g

%
% This is where the to input the data in the form of a file with
% an extension .m
%
Q8_coarse_mesh_data
%
%%%%%%%%%%%%%%%%%%%%%%%%%% End of input%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Assemble the global force vector
%
fg=zeros(n,1);
for i=1: nnd

if nf(i,1) ~= 0
fg(nf(i,1))= Nodal_loads(i,1);

end
if nf(i,2) ~= 0

fg(nf(i,2))= Nodal_loads(i,2);
end

end
%
% Form the matrix containing the abscissas and the weights of Gauss points
%
samp=gauss(ngp);
%
% Numerical integration and assembly of the global stiffness matrix
%
% initialize the global stiffness matrix to zero
kk = zeros(n, n);
%
for i=1:nel

[coord,g] = elem_q8(i) ; % coordinates of the nodes of element i,
% and its steering vector

ke=zeros(eldof,eldof) ; % Initialize the element stiffness
% matrix to zero

for ig=1: ngp
wi = samp(ig,2);

for jg=1: ngp
wj=samp(jg,2);
[der,fun] = fmquad(samp, ig,jg); % Derivative of shape functions

% in local coordinates
jac=der*coord; % Compute Jacobian matrix
d=det(jac); % Compute determinant of Jacobian matrix
jac1=inv(jac); % Compute inverse of the Jacobian
deriv=jac1*der; % Derivative of shape functions in

% global coordinates
bee=formbee(deriv,nne,eldof); % Form matrix [B]
ke=ke + d*thick*wi*wj*bee’*dee*bee; % Integrate stiffness matrix

end
end
kk=form_kk(kk,ke, g); % assemble global stiffness matrix

end
%
%
%%%%%%%%%%%%%%%%%%%%%%% End of assembly %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
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delta = kk\fg ; % solve for unknown displacements
disp(’node x_disp y_disp ’) %
for i=1: nnd %

if nf(i,1) == 0 %
x_disp =0.; %

else
x_disp = delta(nf(i,1)); %

end
%

if nf(i,2) == 0 %
y_disp = 0.; %

else
y_disp = delta(nf(i,2)); %

end
disp([i x_disp y_disp]) ; % Display displacements of each node
DISP(i,:) = [x_disp y_disp];
end
%
%
ngp=1; % Calculate stresses and strains at

% the center of each element
samp=gauss(ngp);
%
for i=1:nel

[coord,g] = elem_q8(i); % coordinates of the nodes of element i, and its steering
vector

eld=zeros(eldof,1); % Initialize element displacement to zero
for m=1:eldof %

if g(m)==0 %
eld(m)=0.; %

else %
eld(m)=delta(g(m)); % Retrieve element displacement from the global displacement

vector
end

end
%

for ig=1: ngp
wi = samp(ig,2);

for jg=1: ngp
wj=samp(jg,2);
[der,fun] = fmquad(samp, ig,jg); % Derivative of shape functions in local coordinates
jac=der*coord; % Compute Jacobian matrix
jac1=inv(jac); % Compute inverse of the Jacobian
deriv=jac1*der; % Derivative of shape functions in global coordinates
bee=formbee(deriv,nne,eldof); % Form matrix [B]
eps=bee*eld % Compute strains
sigma=dee*eps % Compute stresses

end
end
SIGMA(i,:)=sigma ; % Store stresses for all elements

end
%
%
[ZX, ZY, ZT, Z1, Z2]=stresses_at_nodes_Q8(SIGMA);
U2 = DISP(:,2);
%
%
% Choose one the quantities ( U2, ZX, ZY, ZT, Z1, Z2) to plot
%

cmin = min(ZT);
cmax = max(ZT);
caxis([cmin cmax]);
patch(’Faces’, connec, ’Vertices’, geom, ’FaceVertexCData’,ZT,...

’Facecolor’,’interp’,’Marker’,’.’);
colorbar;
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9.7.3.3 Integration of the Stiffness Matrix

The computation of the stiffness matrix is carried out in the same fashion as for the linear quadrilateral
element except that the function elem_Q4.m is replaced by elem_Q8.m and fmlin.m by fmquad.m.
The exact integration of the stiffness matrix requires 3 Gauss points in each direction.

9.7.3.4 Results with the Coarse Mesh

Figures 9.73 through 9.75 show respectively the contours of the vertical displacement v2, the stress
σxx, and the shear stress τxy. The stresses are calculated at the centers of the elements and averaged
at the nodes. The program predicts a displacement at mid-span equal to 0.15 mm. To check whether
this result is accurate, consider the present deep beam as a slender beam and use the engineering
beam theory to calculate the mid-span deflection. For the slender beam with a stiffness EI shown in
Figure 9.76, the mid-span deflection is obtained as

δmax = Pa(3L2 − 4a2)

24EI
(9.91)

400

350

300

250

200

H
ei

gh
t (

m
m

)

150

100

50

0
0 100 200 300 400 500 600 700 800

–0.15

–0.1

–0.05

0

Vertical displacement (mm)

Length (mm)

FIGURE 9.73 Contour of the vertical displacement v2.
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FIGURE 9.76 Slender beam under 4-point bending.

According to Equation (9.91), the mid-span displacement is equal to 0.12 mm, which is less than
the value of 0.15 mm obtained with the program. This is somewhat logical since the engineering
beam theory, on which the analytical formula is based, does not take into account the extra shear
deflections that develop in deep beams. We can, therefore, confidently affirm that the displacement
obtained with the program is as good as can be obtained with a coarse mesh. The contour of the
horizontal stress σxx in Figure 9.74 looks acceptable: compression at the top and tension at the bottom
with the neutral axis is free of any stress. The contour of the shear stress τxy is also acceptable. A
shear band can be seen between the support and the load application point. Elsewhere, the shear
stresses are quite negligible.

9.7.3.5 Program with Automatic Mesh Generation

In the program Plane_Q8_MESH.m, the mesh is automatically generated with the module
Q8_mesh.m. This module prepares the elements’ connectivity and nodal geometry matrices and is
listed next after the main program.

Plane_Q8_mesh.m
% THIS PROGRAM USES AN 8-NODDED QUADRILATERAL ELEMENT FOR THE LINEAR ELASTIC
% STATIC ANALYSIS OF A TWO DIMENSIONAL PROBLEM. IT CONTAINS AN AUTOMATIC
% MESH GENERATION MODULE Q8_mesh.m
%
% Make these variables global so they can be shared by other functions
%
clc
clear all
global nnd nel nne nodof eldof n ngp
global geom connec dee nf Nodal_loads
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global Length Width NXE NYE X_origin Y_origin dhx dhy
%
format long g
%
% To change the size of the problem alter the next lines
%
%
Length = 800.; % Length of the model
Width = 400.; % Width
NXE = 32; % Number of rows in the x direction
NYE = 16; % Number of rows in the y direction
dhx = Length/NXE; % Element size in the x direction
dhy = Width/NYE; % Element size in the x direction
X_origin = 0. ; % X origin of the global coordinate system
Y_origin = 0. ; % Y origin of the global coordinate system
%
nne = 8;
nodof = 2;
eldof = nne*nodof;
ngp = 2;
%
Q8_mesh % Generate the mesh
%
E = 40000.; % Elastic modulus in MPa
vu = 0.17; % Poisson’s ratio
thick = 100.; % Beam thickness in mm
%
% Form the elastic matrix for plane stress
%
dee = formdsig(E,vu);
%
%
% Boundary conditions
%
nf = ones(nnd, nodof); % Initialize the matrix nf to 1
%
% Restrain in all directions the nodes situated @
% (x = Length)
%
for i=1:nnd

if geom(i,1) == Length;
nf(i,:) = [0 1];

end
if geom(i,1) == 100. && geom(i,2) == 0.;

nf(i,:) = [1 0];
end

end
%
% Counting of the free degrees of freedom
%
n=0;
for i=1:nnd

for j=1:nodof
if nf(i,j) ~= 0

n=n+1;
nf(i,j)=n;

end
end

end
%
% loading
%
Nodal_loads= zeros(nnd, 2); % Initialize the matrix of nodal loads to 0
%
% Apply a concentrated at the node having x = 0, and y = 0.
%
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Force = 30000.; % N
%
for i=1:nnd

if geom(i,1) == 500. && geom(i,2) == 400.
Nodal_loads(i,:) = [0. -Force]; % Force acting in negative

% direction
end

end
%
%%%%%%%%%%%%%%%%%%%%%%%%%% End of input%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Assemble the global force vector
%
fg=zeros(n,1);
for i=1: nnd

if nf(i,1) ~= 0
fg(nf(i,1))= Nodal_loads(i,1);

end
if nf(i,2) ~= 0

fg(nf(i,2))= Nodal_loads(i,2);
end

end
%
% Form the matrix containing the abscissas and the weights of Gauss points
%
samp=gauss(ngp);
%
% Numerical integration and assembly of the global stiffness matrix
%
% initialize the global stiffness matrix to zero
kk = zeros(n, n);
%
for i=1:nel

[coord,g] = elem_q8(i) ; % coordinates of the nodes of element i,
% and its steering vector

ke=zeros(eldof,eldof) ; % Initialize the element stiffness
% matrix to zero

for ig=1: ngp
wi = samp(ig,2);

for jg=1: ngp
wj=samp(jg,2);
[der,fun] = fmquad(samp, ig,jg); % Derivative of shape functions

% in local coordinates
jac=der*coord; % Compute Jacobian matrix
d=det(jac); % Compute determinant of Jacobian matrix
jac1=inv(jac); % Compute inverse of the Jacobian
deriv=jac1*der; % Derivative of shape functions in

% global coordinates
bee=formbee(deriv,nne,eldof); % Form matrix [B]
ke=ke + d*thick*wi*wj*bee’*dee*bee; % Integrate stiffness matrix

end
end
kk=form_kk(kk,ke, g); % assemble global stiffness matrix

end
%
%
%%%%%%%%%%%%%%%%%%%%%%% End of assembly %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
delta = kk\fg ; % solve for unknown displacements
disp(’node x_disp y_disp ’) %
for i=1: nnd %

if nf(i,1) == 0 %
x_disp =0.; %

else
x_disp = delta(nf(i,1)); %

end
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%
if nf(i,2) == 0 %

y_disp = 0.; %
else

y_disp = delta(nf(i,2)); %
end

disp([i x_disp y_disp]) ; % Display displacements of each node
DISP(i,:) = [x_disp y_disp];
end
%
%
ngp=1; % Calculate stresses and strains at

% the center of each element
samp=gauss(ngp);
%
for i=1:nel

[coord,g] = elem_q8(i); % coordinates of the nodes of element i,
% and its steering vector

eld=zeros(eldof,1); % Initialize element displacement to zero
for m=1:eldof %

if g(m)==0 %
eld(m)=0.; %

else %
eld(m)=delta(g(m)); % Retrieve element displacement from the

% global displacement vector
end

end
%

for ig=1: ngp
wi = samp(ig,2);

for jg=1: ngp
wj=samp(jg,2);
[der,fun] = fmquad(samp, ig,jg); % Derivative of shape functions in

% local coordinates
jac=der*coord; % Compute Jacobian matrix
jac1=inv(jac); % Compute inverse of the Jacobian
deriv=jac1*der; % Derivative of shape functions

% in global coordinates
bee=formbee(deriv,nne,eldof); % Form matrix [B]
eps=bee*eld % Compute strains
sigma=dee*eps % Compute stresses

end
end
SIGMA(i,:)=sigma ; % Store stresses for all elements

end
%
%
[ZX, ZY, ZT, Z1, Z2]=stresses_at_nodes_Q8(SIGMA);
%
%
% Plot stresses in the x_direction
%
U2 = DISP(:,2);
cmin = min(U2);
cmax = max(U2);
caxis([cmin cmax]);
patch(’Faces’, connec, ’Vertices’, geom, ’FaceVertexCData’,U2,...

’Facecolor’,’interp’,’Marker’,’.’);
colorbar;

Q8_mesh.m
% This module generates a mesh of 8-nodded quadrilateral elements
%
global nnd nel nne nodof eldof n

© 2013 by Taylor & Francis Group, LLC



Plane Problems 319

global geom connec dee nf Nodal_loads
global Length Width NXE NYE X_origin Y_origin dhx dhy
%
%
nnd = 0;
k = 0;
for i = 1:NXE

for j=1:NYE
k = k + 1;

%
n1 = (i-1)*(3*NYE+2)+2*j - 1;
n2 = i*(3*NYE+2)+j - NYE - 1;
n3 = i*(3*NYE+2)+2*j-1;
n4 = n3 + 1;
n5 = n3 + 2;
n6 = n2 + 1;
n7 = n1 + 2;
n8 = n1 + 1;

%
geom(n1,:) = [(i-1)*dhx - X_origin (j-1)*dhy - Y_origin ];
geom(n3,:) = [i*dhx - X_origin (j-1)*dhy - Y_origin ];
geom(n2,:) = [(geom(n1,1)+geom(n3,1))/2 (geom(n1,2)+geom(n3,2))/2];
geom(n5,:) = [i*dhx- X_origin j*dhy - Y_origin ];
geom(n4,:) = [(geom(n3,1)+ geom(n5,1))/2 (geom(n3,2)+ geom(n5,2))/2];
geom(n7,:) = [(i-1)*dhx - X_origin j*dhy - Y_origin ];
geom(n6,:) = [(geom(n5,1)+ geom(n7,1))/2 (geom(n5,2)+ geom(n7,2))/2];
geom(n8,:) = [(geom(n1,1)+ geom(n7,1))/2 (geom(n1,2)+ geom(n7,2))/2];

%
nel = k;
nnd = n5;
connec(k,:) = [n1 n2 n3 n4 n5 n6 n7 n8];
end

end

The variables NXE and NYE represent respectively the number of intervals along the x and y
directions as shown in Figure 9.77. For each interval i and j, one element with nodes n1, . . . , n8 is
created. The module returns the matrices geom(nnd, 2) and connec(nel, nne) as well as the number
of elements nel and the number of nodes nnd. The results obtained with the fine mesh (NXE = 32
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FIGURE 9.77 Automatic mesh generation with the Q8 element.
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and NYE = 16) are displayed in Figures 9.78 through 9.80 respectively as contour plots of the
vertical displacement v2, the stress σxx, and the shear stress τxy. The stresses are calculated at the
centers of the elements and averaged at the nodes. More details can be obtained with a finer mesh;
for example, notice the stress concentration at the load application point and the shape of the
shear band.
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FIGURE 9.78 Contour of the vertical displacement v2.
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FIGURE 9.79 Contour of the stress σxx.
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9.7.4 ANALYSIS WITH ABAQUS USING THE Q8 QUADRILATERAL

In this section, we will analyze the simply supported deep beam subject to four-point bending shown
in Figure 9.71. Taking advantage of symmetry, only half the model is analyzed. We will use an
element size of 25 mm so we could compare the results with those obtained previously.

Start Abaqus CAE. Click
on Create Model Database.
On the main menu, click on
File and set Set Work
Directory to choose your
working directory. Click
on Save As and name the
file Deep_Beam_Q8.cae.
On the left-hand-side menu,
click on Part to begin
creating the model. Name
the part DEEP_Beam_Q8,
check 2D Planar, and check
Deformable in the type.
Choose Shell as the base
feature. Enter an approximate
size of 1000 mm and click
on Continue. In the sketcher
menu, choose the Create-
Lines Rectangle icon to
begin drawing the geometry
of the beam. Click on Done
in the bottom-left corner
of the viewport window
(Figure 9.81).

FIGURE 9.81 Creating the Deep_Beam_Q8 Part.

Define a material named
RConcrete with an elas-
tic modulus of 40000 MPa
and a Poisson’s ratio of
0.17. Next, click on Sections
to create a section named
Beam_section_Q8. In the
Category check Solid, and
in the Type, check Homoge-
neous. Click on Continue. In
the Edit Section dialog box,
check Plane stress/strain
thickness and enter 100 mm
as the thickness. Click on OK
(Figure 9.82).

FIGURE 9.82 Creating a plane stress section.
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Expand the menu under
Parts and Deep_Beam_Q8,
and double click on Section
Assignments. With the
mouse select the whole
part. In the Edit Section
Assignments dialog box,
select Beam_section_Q8 and
click on OK (Figure 9.83).

FIGURE 9.83 Editing section assignments.

In the model tree, double
click on Mesh under the
Deep_Beam_Q8. In the main
menu, under Mesh, click on
Mesh Controls. In the dialog
box, check Quad for Ele-
ment shape and Structured
for Technique. Click on OK.
Under Mesh, click on Ele-
ment Type. In the dialog
box, select Standard for ele-
ment library, Quadratic for
geometric order. In Quad,
check Reduced integration.
The description of the ele-
ment CPS8R: A 8-node
biquadratic plane stress
quadrilateral, reduced inte-
gration can be seen in the
dialog box. Click on OK
(Figure 9.84).

FIGURE 9.84 Mesh controls and element type.

© 2013 by Taylor & Francis Group, LLC



Plane Problems 323

In the main menu, under Seed,
click on Part. In the dialog
box, enter 25 for Approxi-
mate global size. Click on
OK and on Done. In the main
menu, under Mesh, click on
Part. In the prompt area, click
on Yes (Figure 9.85).

FIGURE 9.85 Mesh.

Under Part, in the left-hand-
side menu, click on Sets.
In the dialog box, name the
set Loaded_node and check
Node for Type. Click on Con-
tinue. In the viewport, locate
the node situated at 300 mm
from the right edge, which
is the centerline of the beam.
Click on Done (Figure 9.86).

FIGURE 9.86 Creating the node set Loaded_node.
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Repeat the procedure, and this
time name the node set Cen-
terline. In the viewport, locate
all the nodes situated on the
right edge. Click on Done
(Figure 9.87).

FIGURE 9.87 Creating the node set Centerline.

Repeat the procedure and this
time name the node set Sup-
port. In the viewport, locate
the node situated at 100 mm
from the left bottom corner.
Click on Done (Figure 9.88).

FIGURE 9.88 Creating the node set Support.
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In the model tree, expand the Assembly
and double click on Instances. Select
Deep_Beam_Q8 for Parts, and click
OK. In the model tree, expand Steps and
Initial, and double click on BC. Name
the boundary condition Roller, select
Displacement/Rotation for the type,
and click on Continue. In the bottom-
right corner of the viewport, click
on Sets, and select Deep_Beam_Q8-
1.Support and click on Continue. In the
Edit Boundary Condition check U2.
Click OK. Repeat the procedure again,
this time select the set Deep_Beam_Q8-
1.Centerline and click on Continue. In
the Edit Boundary Condition check
U1. Click OK (Figure 9.89).

FIGURE 9.89 Imposing BC using a node set.

In the model tree, double
click on Steps. Name the step
Apply_loads. Set the proce-
dure to General and select
Static, General. Click on
Continue. Click on OK. In
the model tree, under steps,
and under Apply_loads,
click on Loads. Name the
load Point_Load and select
Concentrated force as the
type. Click on Continue.
In the bottom-right corner
of the viewport, click on
sets and select Deep_Beam_
Q8-1.Loaded_ node. In the
Edit Load dialog box, enter
−30000 for CF2. Click OK
(Figure 9.90).

FIGURE 9.90 BC and loads.

Under Analysis, right click on Jobs and then click on Create.
In the Create Job dialog box, name the job Deep_Beam_Q8 and click on Continue. In the

Edit Job dialog box, enter a description for the job. Check Full analysis, select to run the job in
Background and check to start it immediately. Click OK. Expand the tree under Jobs, right click
on Deep_Beam_Q8. Then, click on Submit. If you get the following message Deep_Beam_Q8
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FIGURE 9.91 Contour of the vertical displacement.

FIGURE 9.92 Contour of the horizontal stress σxx.

completed successfully in the bottom window, then your job is free of errors and was executed
properly.

Under the top menu, in the Module scroll to Visualization, and click to load Abaqus Viewer.
On the main menu, under File, click Open, navigate to your working directory, and open the file
Deep_Beam_Q8.odb. It should have the same name as the job you submitted. Click on the icon Plot
on Undeformed shape. Under the main menu, select U and U2 to plot the vertical displacement
(Figure 9.91). It can be seen that the displacement contour is exactly the same as that obtained with
the MATLAB code (Figure 9.78).

Under the main menu, select S and S11 to plot σxx (Figure 9.92). Again, the contour is very
similar to that shown in Figure 9.79.

9.8 SOLVED PROBLEM WITH MATLAB�

9.8.1 STRIP FOOTING WITH THE CST ELEMENT

Figure 9.93 represents a strip footing on a sandy soil with an elastic modulus E = 105 kN/m2 and
a Poisson’s ratio μ = 0.3. The footing is 2 m wide and supports a uniformly distributed load of
5 kN/m2. Five meters beneath the footing the soil is made up of a solid rock formation that can be
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2 m

6 m

5 m

5 kN/m2

E= 105 kN/m2

ν = 0.3

Rock substratum

FIGURE 9.93 Strip footing.

considered very stiff. In addition, assume that 6 m away from the center of the footing the horizontal
displacement of the soil is negligible.

Consider an element length of 0.5 m, analyze the footing using both the CST and LST elements:

• Plot the vertical deflection of the center line as a function of depth
• Produce a contour of the second principal stress σ2

The finite strip footing is a three-dimensional solid. However, the longitudinal direction is very
important, which therefore prevents thickness change. The ends of the strip foundations are prevented
from moving in the z-direction, then the displacement w is equal to zero. At the mid-span of the
footing, by symmetry, w must be also equal to zero. Therefore, we assume that w is zero everywhere
and the displacements u and v are functions of x and y only. Such a state is characterized by
εzz = εxz = εyz = 0 and it is a state of plane strain. The function formdeps.m is used to generate the
matrix of the elastic properties. In addition, the geometry of the footing is symmetrical, therefore
only the right half is discretized as shown in Figure 9.94.

The domain is discretized using 12 intervals along the x-direction, NXE = 12, and 10 along
the y-direction, NYE = 10. These give an element size of 0.5 m in both directions as shown in
Figure 9.95.

The boundary conditions of restrained nodes are generated using their coordinates as follows:

• The nodes directly beneath the center of the footing, x = 0, and the nodes situated on the
right boundary, x = Length, are restrained in the x-direction

if geom(i,1) == 0. | geom(i,1) == Length;
nf(i,:) = [0 1];

end

• The nodes situated on the rocky substratum, y = 0, are restrained in all directions

if geom(i,2) == 0. ;
nf(i,:) = [0 0];

end
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FIGURE 9.94 Strip footing model.
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FIGURE 9.95 Mesh with the CST element.

The mesh generating function T3_mesh.m does not actually generate the loading. This was added
manually to the figure. Indeed, since T3_mesh.m numbers the nodes in the y-direction, it is not
difficult to see in Figure 9.95 that nodes 11, 22, and 33 are the loaded nodes. Equivalent statically
concentrated loads are applied to these nodes as follows:

Nodal_loads(11,:) = [0. -1.25];
Nodal_loads(22,:) = [0. -2.50];
Nodal_loads(33,:) = [0. -1.25];
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CST_STRIP_FOOTING.m

% THIS PROGRAM USES AN 3-NODE LINEAR TRIANGULAR ELEMENT FOR THE
% LINEAR ELASTIC STATIC ANALYSIS OF A TWO DIMENSIONAL PROBLEM
% IT INCLUDES AN AUTOMATIC MESH GENERATION
%
% Make these variables global so they can be shared by other functions
%
clear all
clc
global nnd nel nne nodof eldof n
global geom dee nf Nodal_loads
global Length Width NXE NYE X_origin Y_origin
%
format long g
%
%
% To change the size of the problem or change elastic properties
% supply another input file
%
Length = 6.; % Length of the model
Width =5.; % Width
NXE = 12; % Number of rows in the x direction
NYE = 10; % Number of rows in the y direction
dhx = Length/NXE; % Element size in the x direction
dhy = Width/NYE; % Element size in the x direction
X_origin = 0. ; % X origin of the global coordinate system
Y_origin = 0. ; % Y origin of the global coordinate system
%
nne = 3;
nodof = 2;
eldof = nne*nodof;
%
T3_mesh ; % Generate the mesh
%
% Material
%
E = 100000.; % Elastic modulus in MPa
vu = 0.3; % Poisson’s ratio
thick = 1.; % Beam thickness in mm
%
% Form the elastic matrix for plane strain
%
dee = formdeps(E,vu);
%
%
% Boundary conditions
%
nf = ones(nnd, nodof); % Initialize the matrix nf to 1
%
% Restrain in the x-direction the nodes situated @
% (x = 0 or x = Length)
%
for i=1:nnd

if geom(i,1) == 0. | geom(i,1) == Length;
nf(i,:) = [0 1];

end
end
%
% Restrain in all directions the nodes situated @
% (y = 0)
%
for i=1:nnd

if geom(i,2) == 0. ;
nf(i,:) = [0 0];

end
end
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%
% Counting of the free degrees of freedom
%
n=0;
for i=1:nnd

for j=1:nodof
if nf(i,j) ~= 0

n=n+1;
nf(i,j)=n;

end
end

end
%
% loading
%
Nodal_loads= zeros(nnd, 2); % Initialize the matrix of nodal loads to 0
%
% Apply equivalent concentrated loads on nodes 11, 22, and 33 in the
% y-direction.
%

Nodal_loads(11,:) = [0. -1.25];
Nodal_loads(22,:) = [0. -2.50];
Nodal_loads(33,:) = [0. -1.25];

%
%%%%%%%%%%%%%%%%%%%%%%%%%% End of input%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Assemble the global force vector
%
fg=zeros(n,1);
for i=1: nnd

if nf(i,1) ~= 0
fg(nf(i,1))= Nodal_loads(i,1);

end
if nf(i,2) ~= 0

fg(nf(i,2))= Nodal_loads(i,2);
end

end
%
% Assembly of the global stiffness matrix
%
% initialize the global stiffness matrix to zero
%
kk = zeros(n, n);
%
for i=1:nel

[bee,g,A] = elem_T3(i); % Form strain matrix, and stering vector
ke=thick*A*bee’*dee*bee; % Compute stiffness matrix
kk=form_kk(kk,ke, g); % assemble global stiffness matrix

end
%
%
%%%%%%%%%%%%%%%%%%%%%%% End of assembly %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
delta = kk\fg ; % solve for unknown displacements
%
for i=1: nnd %

if nf(i,1) == 0 %
x_disp =0.; %

else
x_disp = delta(nf(i,1)); %

end
%

if nf(i,2) == 0 %
y_disp = 0.; %

else
y_disp = delta(nf(i,2)); %
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end
node_disp(i,:) =[x_disp y_disp];

end
%
%
% Retrieve the y_disp of the nodes located on center line beneath
% the footing
%
k = 0;
vertical_disp=zeros(1,NYE+1);
for i=1:nnd;

if geom(i,1)== 0.
k=k+1;
y_coord(k) = geom(i,2);
vertical_disp(k)=node_disp(i,2);

end
end
%
for i=1:nel

[bee,g,A] = elem_T3(i); % Form strain matrix, and stering vector
eld=zeros(eldof,1); % Initialize element displacement to zero
for m=1:eldof

if g(m)==0
eld(m)=0.;
else %
eld(m)=delta(g(m)); % Retrieve element displacement
end

end
%

eps=bee*eld; % Compute strains
EPS(i,:)=eps ; % Store strains for all elements
sigma=dee*eps; % Compute stresses
SIGMA(i,:)=sigma ; % Store stresses for all elements

end
%
% Calculate the principal stresses
%
SIG1=zeros(nel,1); SIG2=zeros(nel,1);
for i = 1:nel

SIG1(i)=(SIGMA(i,1)+SIGMA(i,2))/2 + ...
sqrt(((SIGMA(i,1)+SIGMA(i,2))/2)^2 +SIGMA(i,3)^2);

SIG2(i)=(SIGMA(i,1)+SIGMA(i,2))/2 - ...
sqrt(((SIGMA(i,1)+SIGMA(i,2))/2)^2 +SIGMA(i,3)^2);

end
cmin = min(SIG2);
cmax = max(SIG2);
caxis([cmin cmax]);
patch(’Faces’, connec, ’Vertices’, geom, ’FaceVertexCData’,SIG2, ...

’Facecolor’,’flat’,’Marker’,’o’);
colorbar;
%
plottools;

The computed results are shown in Figure 9.96. A patch plot of the principal stress σ2 as well
as the vertical displacements of the nodes situated just below the center of the footing are shown.
Both the maximum displacement and maximum stress, respectively equal to 0.12 mm and 8 kN/m2,
occur just below the footing.

9.8.2 STRIP FOOTING WITH THE LST ELEMENT

The domain is also discretized using 12 intervals along the x-direction, NXE = 12, and 10 along
the y-direction, NYE = 10. These give an element size of 0.5 m in both directions as shown in
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FIGURE 9.96 Computed result with the CST element.

Y

0.416
1.666 1.666

0.833 0.416

10584634221

X

FIGURE 9.97 Mesh with the LST element.

Figure 9.97. The boundary conditions of restrained nodes are entered in the same way as done
previously using the nodal coordinates.

The mesh generating function T6_mesh.m does not generate the loading. This was added man-
ually as shown in Figure 9.97. The function T6_mesh.m numbers the nodes in the y-direction,
therefore it is not difficult to see in Figure 9.97 that nodes 21, 42, 63, 84, and 105 are the loaded
nodes. The equivalent statically concentrated loads are calculated as shown in Figure 9.98, and they
are entered as follows:

Nodal_loads(21,:) = [0. -0.416];
Nodal_loads(42,:) = [0. -1.666];
Nodal_loads(63,:) = [0. -0.833];
Nodal_loads(84,:) = [0. -1.666];
Nodal_loads(105,:) = [0. -0.416];
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FIGURE 9.98 Statically equivalent loads for the LST element.

LST_STRIP_FOOTING.m

% THIS PROGRAM USES A 6-NODE LINEAR TRIANGULAR ELEMENT FOR THE
% LINEAR ELASTIC STATIC ANALYSIS OF A TWO DIMENSIONAL PROBLEM
% IT INCLUDES AN AUTOMATIC MESH GENERATION
%
% Make these variables global so they can be shared by other functions
%
clear all
clc
global nnd nel nne nodof eldof n
global connec geom dee nf Nodal_loads XIG YIG
global Length Width NXE NYE X_origin Y_origin
%
format long g
%
%
% To change the size of the problem or change elastic properties
% supply another input file
%
Length = 6.; % Length of the model
Width =5.; % Width
NXE = 12; % Number of rows in the x direction
NYE = 10; % Number of rows in the y direction
XIG = zeros(2*NXE+1,1); YIG=zeros(2*NYE+1,1); % Vectors holding grid coordinates
dhx = Length/NXE; % Element size in the x direction
dhy = Width/NYE; % Element size in the x direction
X_origin = 0. ; % X origin of the global coordinate system
Y_origin = 0. ; % Y origin of the global coordinate system
%
nne = 6;
nodof = 2;
eldof = nne*nodof;
%
T6_mesh ; % Generate the mesh
%
% Material
%
E = 100000.; % Elastic modulus in MPa
vu = 0.3; % Poisson’s ratio
thick = 1.; % Beam thickness in mm
nhp = 3; % Number of sampling points
%
% Form the elastic matrix for plane stress
%
dee = formdeps(E,vu);
%
%
% Boundary conditions
%
nf = ones(nnd, nodof); % Initialize the matrix nf to 1
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%
% Restrain in the x-direction the nodes situated @
% (x = 0 or x = Length)
%
for i=1:nnd

if geom(i,1) == 0. | geom(i,1) == Length;
nf(i,:) = [0 1];

end
end
%
% Restrain in all directions the nodes situated @
% (y = 0)
%
for i=1:nnd

if geom(i,2) == 0. ;
nf(i,:) = [0 0];

end
end
%
%
% Counting of the free degrees of freedom
%
n=0;
for i=1:nnd

for j=1:nodof
if nf(i,j) ~= 0

n=n+1;
nf(i,j)=n;

end
end

end
%
% loading
%
Nodal_loads= zeros(nnd, 2); % Initialize the matrix of nodal loads to 0
%
%
% Apply equivalent concentrated loads on nodes 21, 42, 63, 84 and 105 in the
% y-direction.
%

Nodal_loads(21,:) = [0. -0.416];
Nodal_loads(42,:) = [0. -1.666];
Nodal_loads(63,:) = [0. -0.833];
Nodal_loads(84,:) = [0. -1.666];
Nodal_loads(105,:) = [0. -0.416];

%
%
%%%%%%%%%%%%%%%%%%%%%%%%%% End of input%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Assemble the global force vector
%
fg=zeros(n,1);
for i=1: nnd

if nf(i,1) ~= 0
fg(nf(i,1))= Nodal_loads(i,1);

end
if nf(i,2) ~= 0

fg(nf(i,2))= Nodal_loads(i,2);
end

end
%
% Assembly of the global stiffness matrix
%
%
% Form the matrix containing the abscissas and the weights of Hammer points
%
samp=hammer(nhp);
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%
% initialize the global stiffness matrix to zero
%
kk = zeros(n, n);
%
for i=1:nel

[coord,g] = elem_T6(i); % Form strain matrix, and stering vector
ke=zeros(eldof,eldof) ; % Initialize the element stiffness matrix to zero
for ig = 1:nhp

wi = samp(ig,3);
[der,fun] = fmT6_quad(samp, ig);
jac = der*coord;
d = det(jac);
jac1=inv(jac); % Compute inverse of the Jacobian
deriv=jac1*der; % Derivative of shape functions in global coordinates
bee=formbee(deriv,nne,eldof); % Form matrix [B]
ke=ke + d*thick*wi*bee’*dee*bee; % Integrate stiffness matrix

end
kk=form_kk(kk,ke, g); % assemble global stiffness matrix

end
%
%
%%%%%%%%%%%%%%%%%%%%%%% End of assembly %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
delta = kk\fg ; % solve for unknown displacements
%
for i=1: nnd %

if nf(i,1) == 0 %
x_disp =0.; %

else
x_disp = delta(nf(i,1)); %

end
%

if nf(i,2) == 0 %
y_disp = 0.; %

else
y_disp = delta(nf(i,2)); %

end
node_disp(i,:) =[x_disp y_disp];

end
%
%
% Retrieve the x_coord and y_disp of the nodes located on the neutral axis
%
k = 0;
for i=1:nnd;

if geom(i,1)== 0.
k=k+1;
y_coord(k) = geom(i,2);
vertical_disp(k)=node_disp(i,2);

end
end
%
nhp = 1; % Calculate stresses at the centroid of the element
samp=hammer(nhp);
%
for i=1:nel

[coord,g] = elem_T6(i); % Retrieve coordinates and stering vector
eld=zeros(eldof,1); % Initialize element displacement to zero
for m=1:eldof %

if g(m)==0 %
eld(m)=0.; %

else %
eld(m)=delta(g(m)); % Retrieve element displacement from

% the global displacement vector
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end
end

%
for ig=1: nhp

[der,fun] = fmT6_quad(samp,ig); % Derivative of shape functions in local coordinates
jac=der*coord; % Compute Jacobian matrix
jac1=inv(jac); % Compute inverse of the Jacobian
deriv=jac1*der; % Derivative of shape functions in global coordinates
bee=formbee(deriv,nne,eldof); % Form matrix [B]
eps=bee*eld; % Compute strains
sigma=dee*eps ; % Compute stresses

end
SIGMA(i,:)=sigma ; % Store stresses for all elements

end
%
% Prepare stresses for plotting
%
[ZX, ZY, ZT, Z1, Z2]=prepare_contour_data(SIGMA);
%
% Plot mesh using patches
%
% patch(’Faces’,connec,’Vertices’,geom,’FaceVertexCData’,hsv(nel), ...
% ’Facecolor’,’none’,’Marker’,’o’);
%
% Plot stresses in the x_direction
%
[C,h]= contourf(XIG,YIG,Z2,40);
%clabel(C,h);
colorbar plottools;

The computed results with the LST element are shown in Figure 9.99. A contour plot of the
principal stress σ2 as well as the vertical displacements of the nodes situated just below the center of
the footing are shown. Like with the CST element, both the maximum displacement and maximum
stress, respectively equal to 0.12 mm and 8 kN/m2, occur just below the footing.

9.8.3 BRIDGE PIER WITH THE Q8 ELEMENT

Using the code Q8_PLANE_STRESS.m, analyze the bridge pier shown in Figure 9.100. It is
subject to six concentrated loads of 170 kN each. The material is reinforced concrete with an elastic
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FIGURE 9.99 Computed result with the LST element.
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FIGURE 9.100 Bridge pier.

modulus of 50000 MPa and a Poisson’s ratio of 0.17. Assume the base support as extremely rigid.
The first step consists of finding ways of simplifying the model. The thickness of the pier is equal
to 0.70 m, which is relatively small compared to the horizontal and vertical dimensions. The pier
can therefore be analyzed as a plane stress problem. In addition, both the loading and geometry are
symmetrical, therefore only half the pier can be analyzed. The second step consists of identifying the
boundary conditions on the model as shown in Figure 9.101. The third step consists of constructing
an appropriate mesh of the domain. Indeed, the quality of the numerical results depends very much on
the quality of the mesh. However, this is probably the most difficult and time-consuming task in any
finite element analysis specially when complex geometries are considered. Like in the present case,
the domain is not regular, therefore the mesh generation routine Q8_mesh.m presented previously
cannot be used since it was written for regular rectangular domains. To mesh the present domain,
the Abaqus interactive edition was used. As seen previously, Abaqus generates an input file. The
nodal coordinates and elements’ connectivity are imported into MATLAB. However, this is not
a straightforward procedure. Indeed, as shown in Figure 9.102, within the 8-node quadrilateral
element, Abaqus numbers differently the nodes.

The following in an excerpt of the Abaqus input file pier.inp, which lists the connectivity of
elements 1 to 10:

*Element, type=CPS8R
1, 65, 67, 117, 64, 173, 174, 175, 176
2, 67, 65, 66, 116, 173, 177, 178, 179
3, 62, 20, 114, 68, 180, 181, 182, 183
4, 118, 113, 69, 120, 184, 185, 186, 187
5, 145, 158, 161, 156, 188, 189, 190, 191
6, 70, 69, 2, 1, 192, 193, 194, 195
7, 141, 78, 79, 152, 196, 197, 198, 199
8, 120, 69, 70, 119, 186, 192, 200, 201
9, 112, 73, 60, 61, 202, 203, 204, 205
10, 81, 137, 121, 167, 206, 207, 208, 209
......
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FIGURE 9.101 Bridge pier model.
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Abaqus numbering Present code numbering

FIGURE 9.102 Element internal node numbering.

For these data to be used in the MATLAB code Q8_PLANE_STRESS.m, they are rearranged
as follows:

connec = [65 173 67 174 117 175 64 176 ;... % Element 1
67 173 65 177 66 178 116 179 ;...
62 180 20 181 114 182 68 183 ;...
118 184 113 185 69 186 120 187 ;...
145 188 158 189 161 190 156 191 ;...
70 192 69 193 2 194 1 195 ;...
141 196 78 197 79 198 152 199 ;...
120 186 69 192 70 200 119 201 ;...
112 202 73 203 60 204 61 205 ;...
81 206 137 207 121 208 167 209 ;...

.....
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FIGURE 9.103 Finite element discretization of the pier model.

Note how the columns are swapped to comply with the MATLAB code numbering scheme. This
can be achieved by importing the input file to Microsoft Excel and rearranging the columns manually
or by a writing a MATLAB code that reads the input file and rearranges the columns.

The data consist of 138 elements and 481 nodes. The details are given in the file
PIER_Q8_data.m, and the actual mesh is shown in Figure 9.103. Note that a consistent set of
units is used: dimensions in meters, forces in kN, and Young’s modulus in kN/m2. All the nodes
situated at x = 0 are fixed in the x-directions, and all the nodes situated at y = −7.5 forming the base
are fixed in both directions. Nodes 18, 19, and 20, situated respectively at (x = 5. m, y = 3.5 m),
(x = 3. m, y = 3.5 m), and (x = 1. m, y = 3.5 m), are each subject to a vertical force of −170 kN.

PIER_Q8_data.m
%%%%%%%%%%%%%%%%%%%%%%%%%% Beginning of data input %%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Data file for the bridge pier analysis using 8-nodded quadrilaterals
%
global nnd nel nne nodof eldof n ngp
global geom connec dee nf Nodal_loads

%
nnd = 481 ; % Number of nodes:
nel = 138; % Number of elements:
nne = 8 ; % Number of nodes per element:
nodof =2; % Number of degrees of freedom per node
ngp = 2 % number of Gauss points
eldof = nne*nodof; % Number of degrees of freedom per element
%
% Thickness of the domain
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thick = 0.7 ; % Thickness in meters
% Material properties
%
E=50.e6; vu=0.17; % Young’s modulus (kN/m^2)and Poisson’s ratio
%
% Form the matrix of elastic properties
%
dee=formdsig(E,vu); % Matrix of elastic properties plane strain
%
% Nodes coordinates x and y
%
geom = [1.4489 0.3882 ;... x and y coordinates of node
481

1.2990 0.7500 ;...
1.0607 1.0607 ;...
0.7500 1.2990 ;...
0.3882 1.4489 ;...
1.5000 0.0000 ;...
0.0000 1.5000 ;...
1.5000 -7.5000 ;...
3.5000 -7.5000 ;...
3.5000 0.0000 ;...
3.5480 0.4877 ;...
3.9213 1.3889 ;...
4.2322 1.7678 ;...
4.6111 2.0787 ;...
5.5123 2.4520 ;...
6.0000 2.5000 ;...
6.0000 3.5000 ;...
5.0000 3.5000 ;...
3.0000 3.5000 ;...
1.0000 3.5000 ;...
0.0000 3.5000 ;...
1.5000 -0.5000 ;...
1.5000 -1.0000 ;...
1.5000 -1.5000 ;...
1.5000 -2.0000 ;...
1.5000 -2.5000 ;...
1.5000 -3.0000 ;...
1.5000 -3.5000 ;...
1.5000 -4.0000 ;...
1.5000 -4.5000 ;...
1.5000 -5.0000 ;...
1.5000 -5.5000 ;...
1.5000 -6.0000 ;...
1.5000 -6.5000 ;...
1.5000 -7.0000 ;...
2.0000 -7.5000 ;...
2.5000 -7.5000 ;...
3.0000 -7.5000 ;...
3.5000 -7.0000 ;...
3.5000 -6.5000 ;...
3.5000 -6.0000 ;...
3.5000 -5.5000 ;...
3.5000 -5.0000 ;...
3.5000 -4.5000 ;...
3.5000 -4.0000 ;...
3.5000 -3.5000 ;...
3.5000 -3.0000 ;...
3.5000 -2.5000 ;...
3.5000 -2.0000 ;...
3.5000 -1.5000 ;...
3.5000 -1.0000 ;...
3.5000 -0.5000 ;...
3.6903 0.9567 ;...
5.0433 2.3097 ;...
6.0000 3.0000 ;...
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5.5000 3.5000 ;...
4.5000 3.5000 ;...
4.0000 3.5000 ;...
3.5000 3.5000 ;...
2.5000 3.5000 ;...
2.0000 3.5000 ;...
1.5000 3.5000 ;...
0.5000 3.5000 ;...
0.0000 3.0000 ;...
0.0000 2.5000 ;...
0.0000 2.0000 ;...
0.5279 2.5104 ;...
1.4959 3.0626 ;...
1.5745 0.8916 ;...
1.7401 0.4784 ;...
3.0678 0.0527 ;...
3.2060 0.5869 ;...
2.4709 3.0574 ;...
3.6579 1.6005 ;...
4.4579 2.3344 ;...
4.5316 2.9797 ;...
4.9797 3.1580 ;...
1.8298 0.0390 ;...
1.9024 -0.4486 ;...
1.9821 -0.9532 ;...
3.9824 2.0741 ;...
2.9942 -1.9923 ;...
2.0045 -2.5012 ;...
3.0014 -3.5050 ;...
2.0045 -4.0063 ;...
3.0035 -5.0060 ;...
2.0042 -5.5061 ;...
3.0033 -6.0056 ;...
2.0026 -6.0047 ;...
3.0027 -6.5043 ;...
2.0013 -6.5036 ;...
3.0016 -7.0020 ;...
2.0002 -7.0015 ;...
3.0035 -5.5056 ;...
2.0042 -5.0056 ;...
2.0038 -4.5049 ;...
3.0033 -4.5053 ;...
3.0027 -4.0051 ;...
2.0039 -3.5054 ;...
2.0034 -3.0033 ;...
2.9993 -3.0030 ;...
2.9970 -2.4998 ;...
2.0057 -1.9916 ;...
2.0044 -1.4742 ;...
2.9993 -1.4785 ;...
3.0327 -0.9731 ;...
3.0998 -0.4957 ;...
3.3175 1.1463 ;...
3.9957 3.0076 ;...
3.4702 2.9078 ;...
2.9566 3.0118 ;...
1.9863 3.0733 ;...
1.3008 1.2396 ;...
1.0014 3.0384 ;...
0.9828 1.5734 ;...
0.5929 1.9562 ;...
0.5039 3.0118 ;...
1.5590 1.4193 ;...
2.0705 0.5842 ;...
1.9288 1.0906 ;...
3.6925 2.5511 ;...
4.8666 2.6297 ;...
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2.5004 -2.4996 ;...
2.5046 -4.0070 ;...
2.5049 -5.5071 ;...
2.5027 -6.5046 ;...
2.5035 -6.0055 ;...
2.5047 -5.0066 ;...
2.5043 -4.5058 ;...
2.5031 -3.5058 ;...
2.5017 -3.0033 ;...
2.4994 -1.9860 ;...
2.5006 -1.4524 ;...
2.5053 -0.8546 ;...
2.7641 -0.4931 ;...
2.8417 1.1161 ;...
3.9934 2.5661 ;...
1.3049 1.7687 ;...
2.8367 0.6671 ;...
3.1567 1.5168 ;...
2.1675 0.1239 ;...
2.5011 -7.0019 ;...
2.6413 -0.1504 ;...
2.4210 2.6375 ;...
2.8474 2.5634 ;...
1.9773 2.6633 ;...
1.5193 2.6440 ;...
1.0320 2.5819 ;...
2.0271 1.5224 ;...
2.4001 1.0934 ;...
2.4406 0.6514 ;...
2.2846 -0.3356 ;...
2.8123 1.5885 ;...
1.9850 2.2736 ;...
1.1200 2.1537 ;...
3.2207 2.4235 ;...
1.5744 2.2513 ;...
2.7330 2.1697 ;...
2.3705 2.2499 ;...
1.6578 1.8873 ;...
3.0443 2.0121 ;...
2.3874 1.5056 ;...
2.0083 1.8949 ;...
2.3454 1.8741 ;...
5.3776 2.9409 ;...
4.3237 2.6067 ;...
3.5630 2.2212 ;...
2.5059 0.2226 ;...
3.3638 1.8329 ;...
1.7419 1.5990 ;...
2.7962 0.3080 ;...
2.6233 1.8785 ;...
0.2640 2.5052 ;...
0.5159 2.7611 ;...
0.2520 3.0059 ;...
0.0000 2.7500 ;...
0.0000 2.2500 ;...
0.2964 1.9781 ;...
0.5604 2.2333 ;...
1.2500 3.5000 ;...
1.0007 3.2692 ;...
1.2487 3.0505 ;...
1.4980 3.2813 ;...
1.4299 1.3294 ;...
1.4377 1.0656 ;...
1.7516 0.9911 ;...
1.7439 1.2549 ;...
2.7902 2.3665 ;...
2.8887 2.0909 ;...
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3.1325 2.2178 ;...
3.0341 2.4934 ;...
1.6573 0.6850 ;...
1.4368 0.8208 ;...
1.3858 0.5740 ;...
1.5945 0.4333 ;...
1.9987 0.0815 ;...
1.8661 -0.2048 ;...
2.0935 -0.3921 ;...
2.2260 -0.1058 ;...
1.9053 0.5313 ;...
1.9996 0.8374 ;...
2.2286 3.0653 ;...
2.4854 3.2787 ;...
2.2500 3.5000 ;...
1.9932 3.2866 ;...
3.9879 2.3201 ;...
3.8430 2.5586 ;...
3.6277 2.3861 ;...
3.7727 2.1477 ;...
5.1221 2.7853 ;...
4.9550 2.4697 ;...
5.2743 2.3924 ;...
5.4449 2.6964 ;...
4.6623 2.4821 ;...
4.5345 2.2065 ;...
4.8215 2.2048 ;...
5.4388 3.2205 ;...
5.2500 3.5000 ;...
4.9898 3.3290 ;...
5.1786 3.0494 ;...
6.0000 2.7500 ;...
5.6888 2.9705 ;...
5.7550 2.4880 ;...
1.6649 0.0195 ;...
1.5000 -0.2500 ;...
1.7012 -0.4743 ;...
3.2999 -0.4979 ;...
3.0663 -0.7344 ;...
3.2664 -0.9866 ;...
3.5000 -0.7500 ;...
1.9423 -0.7009 ;...
1.5000 -0.7500 ;...
1.7411 -0.9766 ;...
4.2202 2.2043 ;...
4.1073 1.9210 ;...
4.4140 1.9325 ;...
3.2496 -1.4892 ;...
3.5000 -1.2500 ;...
3.0160 -1.2258 ;...
2.9956 -2.2460 ;...
2.7468 -1.9891 ;...
2.4999 -2.2428 ;...
2.7487 -2.4997 ;...
3.2497 -3.0015 ;...
3.5000 -2.7500 ;...
3.2485 -2.4999 ;...
2.9981 -2.7514 ;...
3.0020 -3.7550 ;...
2.7522 -3.5054 ;...
2.5038 -3.7564 ;...
2.7536 -4.0061 ;...
3.2517 -4.5026 ;...
3.5000 -4.2500 ;...
3.2513 -4.0026 ;...
3.0030 -4.2552 ;...
3.0035 -5.2558 ;...
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2.7541 -5.0063 ;...
2.5048 -5.2569 ;...
2.7542 -5.5063 ;...
2.2531 -6.0051 ;...
2.0019 -6.2541 ;...
2.2520 -6.5041 ;...
2.5031 -6.2551 ;...
2.2507 -7.0017 ;...
2.5019 -6.7533 ;...
2.0007 -6.7525 ;...
3.2517 -6.0028 ;...
3.0030 -6.2549 ;...
3.2514 -6.5021 ;...
3.5000 -6.2500 ;...
2.7527 -6.5045 ;...
2.7534 -6.0056 ;...
2.5042 -5.7563 ;...
3.0034 -5.7556 ;...
3.0022 -6.7531 ;...
3.2508 -7.0010 ;...
3.5000 -6.7500 ;...
2.0001 -7.2507 ;...
1.7501 -7.0007 ;...
1.5000 -7.2500 ;...
1.7500 -7.5000 ;...
1.7506 -6.5018 ;...
1.5000 -6.7500 ;...
3.2500 -7.5000 ;...
3.5000 -7.2500 ;...
3.0008 -7.2510 ;...
3.2517 -5.0030 ;...
3.2517 -5.5028 ;...
3.5000 -5.2500 ;...
2.2545 -5.5066 ;...
2.2545 -5.0061 ;...
2.0042 -5.2559 ;...
2.5045 -4.7562 ;...
3.0034 -4.7556 ;...
2.7538 -4.5055 ;...
2.2541 -4.5054 ;...
2.0040 -4.7553 ;...
3.2507 -3.5025 ;...
3.5000 -3.7500 ;...
2.2546 -4.0067 ;...
2.2535 -3.5056 ;...
2.0042 -3.7558 ;...
2.5024 -3.2546 ;...
3.0004 -3.2540 ;...
2.7505 -3.0031 ;...
2.2525 -3.0033 ;...
2.0036 -3.2544 ;...
3.2471 -1.9961 ;...
3.5000 -2.2500 ;...
2.2524 -2.5004 ;...
2.2525 -1.9888 ;...
2.0051 -2.2464 ;...
2.5000 -1.7192 ;...
2.2525 -1.4633 ;...
2.0051 -1.7329 ;...
2.5030 -1.1535 ;...
2.2437 -0.9039 ;...
1.9933 -1.2137 ;...
2.6347 -0.6739 ;...
2.7690 -0.9138 ;...
2.9320 -0.4944 ;...
3.2839 0.0264 ;...
3.0838 -0.2215 ;...
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3.5000 -0.2500 ;...
1.9780 1.3065 ;...
2.1645 1.0920 ;...
2.3938 1.2995 ;...
2.2072 1.5140 ;...
4.7557 3.0688 ;...
4.7500 3.5000 ;...
4.5158 3.2399 ;...
6.0000 3.2500 ;...
5.7500 3.5000 ;...
3.2134 2.9598 ;...
3.4851 3.2039 ;...
3.2500 3.5000 ;...
2.9783 3.2559 ;...
2.7138 3.0346 ;...
2.7500 3.5000 ;...
1.7411 3.0679 ;...
1.7500 3.5000 ;...
1.1807 1.1501 ;...
1.1900 0.9131 ;...
0.5020 3.2559 ;...
0.2500 3.5000 ;...
0.0000 3.2500 ;...
1.1418 1.4065 ;...
0.8664 1.4362 ;...
0.9131 1.1900 ;...
0.8565 2.0550 ;...
0.7878 1.7648 ;...
1.1438 1.6711 ;...
1.2125 1.9612 ;...
0.1958 1.4872 ;...
0.4905 1.7026 ;...
0.0000 1.7500 ;...
1.4319 1.5940 ;...
0.7800 2.5461 ;...
1.0167 2.8101 ;...
0.7527 3.0251 ;...
3.7896 1.4947 ;...
3.4877 1.3734 ;...
3.5039 1.0515 ;...
3.7952 1.1785 ;...
1.4872 0.1958 ;...
1.7850 0.2587 ;...
3.3770 0.5373 ;...
3.1369 0.3198 ;...
3.5120 0.2450 ;...
3.6076 0.7257 ;...
3.2618 0.8666 ;...
2.8392 0.8916 ;...
2.6209 1.1048 ;...
2.4204 0.8724 ;...
2.6386 0.6593 ;...
3.8201 1.8373 ;...
3.4634 2.0270 ;...
3.5109 1.7167 ;...
4.0675 1.5860 ;...
4.2636 2.9936 ;...
4.2500 3.5000 ;...
3.9978 3.2538 ;...
4.6991 2.8047 ;...
2.7027 -0.3218 ;...
2.8545 -0.0488 ;...
1.5000 -1.2500 ;...
1.7522 -1.4871 ;...
3.7330 2.9577 ;...
3.7500 3.5000 ;...
1.7528 -1.9958 ;...
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1.5000 -2.2500 ;...
1.7522 -2.5006 ;...
3.5000 -1.7500 ;...
2.9968 -1.7354 ;...
1.5000 -2.7500 ;...
1.7517 -3.0017 ;...
2.0039 -2.7523 ;...
1.7519 -3.5027 ;...
1.5000 -3.7500 ;...
1.7523 -4.0032 ;...
3.5000 -3.2500 ;...
1.5000 -4.2500 ;...
1.7519 -4.5025 ;...
2.0041 -4.2556 ;...
1.7521 -5.0028 ;...
1.5000 -5.2500 ;...
1.7521 -5.5031 ;...
3.5000 -4.7500 ;...
1.5000 -5.7500 ;...
1.7513 -6.0023 ;...
2.0034 -5.7554 ;...
3.5000 -5.7500 ;...
1.5000 -6.2500 ;...
2.7514 -7.0020 ;...
2.5006 -7.2509 ;...
2.7500 -7.5000 ;...
2.2500 -7.5000 ;...
2.5045 -4.2564 ;...
1.5000 -4.7500 ;...
2.5010 -2.7515 ;...
1.5000 -3.2500 ;...
2.7500 -1.4655 ;...
1.5000 -1.7500 ;...
2.4732 0.4370 ;...
2.6511 0.2653 ;...
2.8164 0.4876 ;...
2.3950 -0.5951 ;...
2.4629 -0.2430 ;...
2.1768 1.8845 ;...
2.0177 1.7087 ;...
2.3664 1.6899 ;...
3.5814 2.7294 ;...
3.9945 2.7868 ;...
3.0796 1.1312 ;...
3.2371 1.3315 ;...
2.9845 1.5527 ;...
2.8270 1.3523 ;...
2.4459 2.8474 ;...
2.6342 2.6004 ;...
2.9020 2.7876 ;...
1.5076 2.8533 ;...
1.7483 2.6537 ;...
1.9818 2.8683 ;...
1.5468 2.4477 ;...
1.7797 2.2624 ;...
1.9812 2.4685 ;...
0.7500 3.5000 ;...
1.2757 2.6130 ;...
0.5740 1.3858 ;...
2.1992 2.6504 ;...
2.1190 0.3541 ;...
2.3367 0.1733 ;...
2.2555 0.6178 ;...
3.3455 2.6656 ;...
4.1586 2.5864 ;...
4.4277 2.7932 ;...
2.5736 0.0361 ;...
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3.0213 0.6270 ;...
3.2603 1.6748 ;...
4.3908 2.4706 ;...
1.0760 2.3678 ;...
1.3472 2.2025 ;...
2.9320 0.1804 ;...
2.9283 1.8003 ;...
3.2041 1.9225 ;...
2.3579 2.0620 ;...
2.1778 2.2618 ;...
1.9967 2.0842 ;...
2.5517 2.2098 ;...
2.4844 1.8763 ;...
2.6782 2.0241 ;...
1.4813 1.8280 ;...
1.6161 2.0693 ;...
1.8845 1.5607 ;...
1.6504 1.5091 ;...
2.5999 1.5471 ;...
2.7178 1.7335 ;...
2.3957 2.4437 ;...
1.6998 1.7431 ;...
3.3919 2.3224 ;...
1.8330 1.8911 ]; % x and y coordinates of node 481

%
% Element connectivity
%
connec = [65 173 67 174 117 175 64 176 ;... % Element 1

67 173 65 177 66 178 116 179 ;...
62 180 20 181 114 182 68 183 ;...
118 184 113 185 69 186 120 187 ;...
145 188 158 189 161 190 156 191 ;...
70 192 69 193 2 194 1 195 ;...
141 196 78 197 79 198 152 199 ;...
120 186 69 192 70 200 119 201 ;...
112 202 73 203 60 204 61 205 ;...
81 206 137 207 121 208 167 209 ;...
165 210 122 211 54 212 15 213 ;...
54 211 122 214 75 215 14 216 ;...
165 217 56 218 18 219 77 220 ;...
16 221 55 222 165 213 15 223 ;...
79 197 78 224 6 225 22 226 ;...
52 227 107 228 106 229 51 230 ;...
80 231 79 226 22 232 23 233 ;...
14 215 75 234 81 235 13 236 ;...
105 237 50 238 51 229 106 239 ;...
102 240 82 241 132 242 123 243 ;...
101 244 47 245 48 246 102 247 ;...
98 248 84 249 130 250 124 251 ;...
97 252 44 253 45 254 98 255 ;...
94 256 86 257 128 258 125 259 ;...
127 260 89 261 91 262 126 263 ;...
93 264 142 265 126 262 91 266 ;...
41 267 88 268 90 269 40 270 ;...
127 263 126 271 90 268 88 272 ;...
125 273 127 272 88 274 94 259 ;...
40 269 90 275 92 276 39 277 ;...
36 278 93 279 35 280 8 281 ;...
93 266 91 282 34 283 35 279 ;...
38 284 9 285 39 276 92 286 ;...
43 287 86 256 94 288 42 289 ;...
87 290 125 258 128 291 95 292 ;...
129 293 128 257 86 294 97 295 ;...
95 291 128 293 129 296 96 297 ;...
46 298 84 248 98 254 45 299 ;...
85 300 124 250 130 301 99 302 ;...
131 303 130 249 84 304 101 305 ;...
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99 301 130 303 131 306 100 307 ;...
49 308 82 240 102 246 48 309 ;...
83 310 123 242 132 311 103 312 ;...
103 311 132 313 133 314 104 315 ;...
133 316 134 317 80 318 104 314 ;...
135 319 134 320 106 228 107 321 ;...
10 322 71 323 107 227 52 324 ;...
149 325 120 326 150 327 162 328 ;...
76 329 77 219 18 330 57 331 ;...
55 332 17 333 56 217 165 222 ;...
111 334 110 335 59 336 19 337 ;...
73 338 111 337 19 339 60 203 ;...
68 340 112 205 61 341 62 183 ;...
69 185 113 342 3 343 2 193 ;...
64 175 117 344 63 345 21 346 ;...
113 347 115 348 4 349 3 342 ;...
155 350 116 351 115 352 138 353 ;...
7 354 5 355 116 178 66 356 ;...
113 184 118 357 138 352 115 347 ;...
117 174 67 358 148 359 114 360 ;...
12 361 74 362 108 363 53 364 ;...
1 365 6 224 78 366 70 195 ;...
11 367 72 368 71 322 10 369 ;...
72 367 11 370 53 363 108 371 ;...
139 372 136 373 150 374 151 375 ;...
74 376 81 209 167 377 169 378 ;...
74 361 12 379 13 235 81 376 ;...
109 380 76 331 57 381 58 382 ;...
77 329 76 383 122 210 165 220 ;...
143 384 135 321 107 323 71 385 ;...
23 386 24 387 104 318 80 233 ;...
110 388 109 382 58 389 59 335 ;...
83 312 103 390 25 391 26 392 ;...
82 308 49 393 50 237 105 394 ;...
26 395 27 396 100 397 83 392 ;...
85 302 99 398 28 399 29 400 ;...
84 298 46 401 47 244 101 304 ;...
29 402 30 403 96 404 85 400 ;...
87 292 95 405 31 406 32 407 ;...
86 287 43 408 44 252 97 294 ;...
32 409 33 410 89 411 87 407 ;...
88 267 41 412 42 288 94 274 ;...
33 413 34 282 91 261 89 410 ;...
38 286 92 414 142 415 37 416 ;...
93 278 36 417 37 415 142 264 ;...
124 418 129 295 97 255 98 251 ;...
30 419 31 405 95 297 96 403 ;...
123 420 131 305 101 247 102 243 ;...
27 421 28 398 99 307 100 396 ;...
133 313 132 241 82 394 105 422 ;...
24 423 25 390 103 315 104 387 ;...
133 422 105 239 106 320 134 316 ;...
151 424 168 425 171 426 139 375 ;...
152 427 134 319 135 384 143 428 ;...
164 429 163 430 149 328 162 431 ;...
110 432 121 207 137 433 109 388 ;...
136 434 108 435 140 436 153 437 ;...
73 438 144 439 145 440 111 338 ;...
68 441 147 442 146 443 112 340 ;...
147 444 157 445 154 446 146 442 ;...
117 360 114 181 20 447 63 344 ;...
114 359 148 448 147 441 68 182 ;...
5 449 4 348 115 351 116 355 ;...
112 443 146 450 144 438 73 202 ;...
70 366 78 196 141 451 119 200 ;...
141 452 168 424 151 453 119 451 ;...
119 453 151 374 150 326 120 201 ;...
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156 454 110 334 111 440 145 191 ;...
137 455 166 456 76 380 109 433 ;...
123 310 83 397 100 306 131 420 ;...
124 300 85 404 96 296 129 418 ;...
125 290 87 411 89 260 127 273 ;...
92 275 90 271 126 265 142 414 ;...
141 199 152 428 143 457 168 452 ;...
108 434 136 372 139 458 72 371 ;...
140 435 108 362 74 378 169 459 ;...
166 460 75 214 122 383 76 456 ;...
148 461 155 462 157 444 147 448 ;...
72 458 139 426 171 463 71 368 ;...
161 464 153 436 140 459 169 465 ;...
163 429 164 466 159 467 154 468 ;...
158 469 159 466 164 470 172 471 ;...
138 472 160 473 157 462 155 353 ;...
155 461 148 358 67 179 116 350 ;...
120 325 149 474 170 475 118 187 ;...
136 437 153 476 162 327 150 373 ;...
152 198 79 231 80 317 134 427 ;...
161 189 158 471 172 477 153 464 ;...
146 446 154 467 159 478 144 450 ;...
118 475 170 479 160 472 138 357 ;...
121 432 110 454 156 480 167 208 ;...
158 188 145 439 144 478 159 469 ;...
154 445 157 473 160 481 163 468 ;...
161 465 169 377 167 480 156 190 ;...
162 476 153 477 172 470 164 431 ;...
75 460 166 455 137 206 81 234 ;...
171 425 168 457 143 385 71 463 ;...
170 474 149 430 163 481 160 479 ]; % Element 138

%
%
% Boundary conditions
%
nf = ones(nnd, nodof); % Initialize the matrix nf to 1
%
for i=1:nnd

if geom(i,1) == 0.;
nf(i,:) = [0 1];

end
if geom(i,2) == -7.5 ;

nf(i,:) = [0 0];
end

end
%
% Counting of the free degrees of freedom
%
n=0;
for i=1:nnd

for j=1:nodof
if nf(i,j) ~= 0

n=n+1;
nf(i,j)=n;

end
end

end
disp (’Nodal freedom’)
nf
disp (’Total number of active degrees of freedom’)
n
%
% loading
%
Nodal_loads = zeros(nnd, 2);
Nodal_loads(18,2)=-170.; % Vertical load on node 18
Nodal_loads(19,2)=-170.; % Vertical load on node 19
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FIGURE 9.105 Contour of the maximum principal stress σ1.
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FIGURE 9.106 Contour of the minimum principal stress σ2.

Nodal_loads(20,2)=-170.; % Vertical load on node 20
%
% End input

To run this example, in the program Q8_PLANE_STRESS.m, replace Q8_coarse_mesh_data
with PIER_Q8_data.m.

The obtained results are displayed in Figures 9.104 through 9.106 respectively as contour plots
of the vertical displacement v2 , the first principal stress σ1, and the second principal stress σ2. The
contours of the principal stresses may not be very accurate since they are calculated at the centers
of the elements and averaged at the nodes. More details can be obtained with a finer mesh.
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10 Axisymmetric Problems

10.1 DEFINITION

An axisymmetric problem is a three-dimensional problem that can be solved using a two-dimensional
model provided that it posses a symmetry of revolution in both geometry, material properties and
loading, and it can lend itself to a cylindrical coordinate. The circular footing on a semi-infinite soil
mass shown in Figure 10.1 is a typical example of a three-dimensional problem that can be classified
as axisymmetric. The only displacements required to define its behavior are the ones in the r and z
directions, denoted by u and v, respectively. They are not a function of θ.

10.2 STRAIN–DISPLACEMENT RELATIONSHIP

Unlike plane stress/strain analysis, in axisymmetric problems a fourth component of the strain εθ

(and hence σθ) must be considered in addition to the plane stress/strain components, εrr, εzz, and γzr

(and stresses σrr, σzz, and τzr), as shown in Figure 10.2. The strains εrr, εzz, and γzr are related to the
displacements u and v in the same way as for a plane stress/strain problem. It follows therefore:

εrr = ∂u

∂r
(10.1)

εzz = ∂v

∂z
(10.2)

γrz = ∂u

∂z
+ ∂v

∂r
(10.3)

The tangential or hoop strain depends only on the radial displacement u. The new length of the arc
AB in Figure 10.3 is equal to (r + u) dθ, the tangential strain is then given as

εθ = (r + u) dθ − r dθ

r dθ
= u

r
(10.4)

Rewriting Equations (10.1) and (10.4) in a matrix form yields

⎧⎪⎪⎨
⎪⎪⎩

εrr

εzz

εθ

γrz

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂x
0

0
∂

∂y
1/r 0
∂

∂y

∂

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

{
u
v

}
(10.5)

or in a more compact form as

{ε} = [L]U (10.6)

where [L] is a linear operator matrix.
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FIGURE 10.1 Typical axisymmetric problem.
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FIGURE 10.2 Strains and corresponding stresses in an axisymmetric solid.
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FIGURE 10.3 Tangential strain.

10.3 STRESS–STRAIN RELATIONS

In three dimensions, the generalized Hooke’s law for an isotropic material with a modulus of
elasticity E and a Poisson’s ratio ν is given in terms of the elasticity matrix by Equation (5.136)
and in terms of the compliance matrix by Equation (5.137). In an axisymmetric problem, the shear
strains γrθ and γzθ and the shear stresses τrθ and τzθ all vanish because of the radial symmetry.
Hence, Equation (5.136) is rewritten only in terms of the four stresses σrr, σzz, σθ, and τzr, and the
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four strains εrr, εzz, εθ, and γzr; that is,

⎧⎪⎪⎨
⎪⎪⎩

σrr

σzz

σθ

τrz

⎫⎪⎪⎬
⎪⎪⎭

= E

(1 + ν)(1 − 2ν)

⎡
⎢⎢⎢⎣

1 − ν ν ν 0
ν 1 − ν ν 0
ν ν 1 − ν 0

0 0 0
(1 − 2ν)

2

⎤
⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

εrr

εzz

εθ

γrz

⎫⎪⎪⎬
⎪⎪⎭

(10.7)

10.4 FINITE ELEMENT FORMULATION

10.4.1 DISPLACEMENT FIELD

For an element having n nodes, the components of the displacement vector are interpolated using
nodal approximations

u = N1u1 + N2u2 + · · · + Nnun (10.8)

v = N1v1 + N2v2 + · · · + Nnvn (10.9)

which, when written in a matrix form, yields

{
u
v

}
=

[
N1 0 | N2 0 | . . . | Nn 0
0 N1 | 0 N2 | . . . | 0 Nn

]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1

v1

u2

v2

...
un

vn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10.10)

or simply as

{U} = [N]a (10.11)

10.4.2 STRAIN MATRIX

Substituting for {U} using Equation (10.10), the strain–displacement Equation (10.7) becomes

{ε} = [B]{a} (10.12)

with

[B] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂N1

∂x
0 | ∂N2

∂x
0 | . . . | ∂Nn

∂x
0

0
∂N1

∂y
| 0

∂N2

∂y
| . . . | 0

∂Nn

∂y
∂N1

r
0 | ∂N2

r
0 | . . . | ∂Nn

r
0

∂N1

∂y

∂N1

∂x
| ∂N2

∂y

∂N2

∂x
| . . . | ∂Nn

∂y

∂Nn

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.13)
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10.4.3 STIFFNESS MATRIX

The stiffness matrix is given as

[Ke] =
[�

Ve

[B]T[D][B] dv

]
=

[� � �
Ve

[B]T[D][B]r dr dθ dz

]
(10.14)

which, when integrated over one radian, becomes

[Ke] =
[� �

Ae

[B]T[D][B]r dr dz

]
(10.15)

10.4.4 NODAL FORCE VECTORS

10.4.4.1 Body Forces

The nodal force vector for body forces such as gravity when integrated over one radian is given as

{fb} =
� �

Ae

[N]T

{
br

bz

}
r dr dz (10.16)

10.4.4.2 Surface Forces Vector

Surface forces indicate traction forces around the external surface of the body. When integrated
over one radian, the nodal vector is written as

{ fs} =
�
L

[N]T

{
tr

tz

}
r dl (10.17)

where dl represents the elemental length around the boundary of the element. When, for a unit
pressure, Equation (10.17) is integrated over a linear or quadratic element, the equivalent nodal
forces are shown in Figure 10.4 [3].
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F1 = F1 =

F2 = F2 =

F3 =

F1 F2 F3
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r1–r0

r1–r0
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F2
CL CL

6
(2r0 + r1)

(r0 + 2r1)
r1 – r0

r1 – r0

r1 – r0

3
(r0 + r1)

r1

6

6

r0

6

FIGURE 10.4 Axisymmetric equivalent nodal loads.
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10.4.4.3 Concentrated Loads

For axisymmetric bodies, concentrated forces are actually line loads around the circumference of
the body. When integrated over one radian, the equivalent nodal forces vector of the line loads are
written as

{ fc} = �i[N]Tri

{
Pr

Pz

}
i

(10.18)

where Pr and Pz are the radial and vertical components of the line force Pi.

10.4.4.4 Example

The thick walled annulus shown in Figure 10.5 has an internal diameter of 400 mm and an external
diameter of 700 mm. It is subject on its top surface to a pressure of 0.5 N/mm2 and to a line load at it
base of 4 N/mm. Find the equivalent nodal loads on the element represented. The element has four
nodes, each having two degrees of freedom. The vector of nodal loads has a dimension of 8. Nodes
4 and 3 are loaded by the 0.5 N/mm2 pressure load. Using the equations shown in Figure 10.5, the
vertical components F1 and F2 can be calculated as follows:

F1 = −0.5 × r1 − r0

6
(2r0 + r1) = −35000 N (10.19)

F2 = −0.5 × r1 − r0

6
(r0 + 2r1) = −45000 N (10.20)

Node 2 is loaded by a radial line load of 4 N/mm. Using Equation (10.18), the horizontal load acting
at node 2 is obtained as

Fr = 700 × 4 = 2800 N (10.21)

Hence, the vector of nodal forces for the element can be written as

{Fe}T = [
0. 0. 2800. 0. 0. −45000 0. −35000

]
(10.22)

400 mm

700 mm

400 mm

0.5 N/mm2

2
1

4
3

4 N/mm

FIGURE 10.5 Typical quadrilateral element on which axisymmetric loads are applied.
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10.5 PROGRAMMING

Figure 10.6 represents a circular footing on a sandy soil with an elastic modulus E = 105 kN/m2 and
a Poisson’s ratio ν = 0.3 . The footing is 2 m in radius and supports a load of 200 kN. Nine meters
beneath the footing, the soil is made up of a solid rock formation that can be considered very stiff.
Assume that 7 m away from the centerline of the footing the horizontal displacement of the soil is
negligible. Consider an element length of 0.5 m, analyze the footing using both the 6-node triangle
and the 8-node quadrilateral elements.

Figure 10.7 shows the geometrical domain and the boundary conditions. Because of symmetry,
only half the domain will be discretized. Nodes on the centerline will only displace in the vertical
direction. Idem for the nodes placed at a 7 m radius because the horizontal movement of the soil at
this distance is assumed negligible. The nodes placed at a depth of 9 m are fixed in all directions
because the rock substratum is assumed in-deformable. The 200 kN is also transformed into an
equivalent uniformly distributed load of 63.662 kN/m2.

200 kN

2 m

E = 105 kN/m2

ν = 0.35

9 
m

R = 7 m

Rock substratum

FIGURE 10.6 Circular footing on a sandy soil.

Y

1 m

63.662 kN/m2

R = 7 m

X

9 
m

FIGURE 10.7 Geometrical model for the circular footing.
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10.5.1 COMPUTER CODE: AXI_SYM_T6.m

The following program, AXI_SYM_T6.m, is an adaptation of the plane stress/strain program
LST_PLANE_STRESS_MESH.m to axisymmetric conditions. The program is listed next and
includes the automatic mesh generation function T6_mesh.m.

% THIS PROGRAM USES A 6-NODE TRIANGULAR ELEMENT FOR THE
% LINEAR ELASTIC STATIC ANALYSIS OF AN AXISYMMETRIC PROBLEM.
% IT INCLUDES AN AUTOMATIC MESH GENERATION
%
% Make these variables global so they can be shared by other functions
%
clear all
clc
global nnd nel nne nodof eldof n
global connec geom dee nf Nodal_loads
global Length Width NXE NYE X_origin Y_origin
%
format long g
%
%
% To change the size of the problem or change elastic properties
% supply another input file
%
Length = 7.; % Length of the model
Width =9.; % Width
NXE = 14; % Number of rows in the x direction
NYE = 18; % Number of rows in the y direction
dhx = Length/NXE; % Element size in the r direction
dhy = Width/NYE; % Element size in the z direction
X_origin = 0. ; % r origin of the global coordinate system
Y_origin = 0. ; % z origin of the global coordinate system
%
nne = 6;
nodof = 2;
eldof = nne*nodof;
%
T6_mesh ; % Generate the mesh
%
% Material
%
E = 100000.; % Elastic modulus in kN/m2
vu = 0.35; % Poisson’s ratio
nhp = 3; % Number of sampling points
%
% Form the elastic matrix for plane stress
%
dee = formdax(E,vu);
%
%
% Boundary conditions
%
nf = ones(nnd, nodof); % Initialize the matrix nf to 1
%
%
for i=1:nnd

if geom(i,1) == 0 || geom(i,1) == Length
nf(i,:) = [0 1]; % Restrain in direction r the nodes situated @

% (x = 0) and (x = Length)
end

%
if geom(i,2) == 0;
nf(i,:) = [0 0]; % Restrain in all directions the nodes situated @

% (y = 0) Rock substratum
end
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end
%
% Counting of the free degrees of freedom
%
n=0;
for i=1:nnd

for j=1:nodof
if nf(i,j) ~= 0

n=n+1;
nf(i,j)=n;

end
end

end
%
% loading
%
Nodal_loads= zeros(nnd, 2); % Initialize the matrix of nodal loads to 0
%
% Apply an equivalent nodal load to the nodes located at
% (r = 0, z = 9.), (r = 0.25, z = 9.), and (r = 0.5, z = 9.)
% (r = .75, z = 9.), (r = 1., z = 9.)
%
pressure = 63.662 ; % kN/m^2
%
for i=1:nnd

if geom(i,1) == 0. && geom(i,2) == 9.
Nodal_loads(i,:) = pressure*[0. 0.];

elseif geom(i,1) == 0.25 && geom(i,2) == 9.
Nodal_loads(i,:) = pressure*[0. -0.0833];

elseif geom(i,1) == 0.5 && geom(i,2) == 9.
Nodal_loads(i,:) = pressure*[0. (-0.0833-0.0833)];

elseif geom(i,1) == 0.75 && geom(i,2) == 9.
Nodal_loads(i,:) = pressure*[0. -0.25];

elseif geom(i,1) == 1. && geom(i,2) == 9.
Nodal_loads(i,:) = pressure*[0. -0.0833];

end
end
%
%%%%%%%%%%%%%%%%%%%%%%%%%% End of input%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Assemble the global force vector
%
fg=zeros(n,1); for i=1: nnd

if nf(i,1) ~= 0
fg(nf(i,1))= Nodal_loads(i,1);

end
if nf(i,2) ~= 0

fg(nf(i,2))= Nodal_loads(i,2);
end

end
%
% Assembly of the global stiffness matrix
%
%
% Form the matrix containing the abscissas and the weights of Hammer points
%
samp=hammer(nhp);
%
% initialize the global stiffness matrix to zero
%
kk = zeros(n, n);
%
for i=1:nel

[coord,g] = elem_T6(i); % Form strain matrix, and steering vector
ke=zeros(eldof,eldof) ; % Initialize the element stiffness matrix to zero
for ig = 1:nhp

wi = samp(ig,3);
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[der,fun] = fmT6_quad(samp, ig);
jac = der*coord;
d = det(jac);
jac1=inv(jac); % Compute inverse of the Jacobian
deriv=jac1*der; % Derivative of shape functions in global coordinates
[bee,radius]=formbee_axi(deriv,nne,fun, coord,eldof); % Form matrix [B]
ke=ke + d*wi*bee’*dee*bee*radius; % Integrate stiffness matrix

end
kk=form_kk(kk,ke, g); % assemble global stiffness matrix

end
%
%
%%%%%%%%%%%%%%%%%%%%%%% End of assembly %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
delta = kk\fg ; % solve for unknown displacements
%
for i=1: nnd %

if nf(i,1) == 0 %
x_disp =0.; %

else
x_disp = delta(nf(i,1)); %

end
%

if nf(i,2) == 0 %
y_disp = 0.; %

else
y_disp = delta(nf(i,2)); %

end
DISP(i,:) = [x_disp y_disp];

end
%
%
nhp = 1; % Calculate stresses at the centroid of the element
samp=hammer(nhp);
%
for i=1:nel

[coord,g] = elem_T6(i); % Retrieve coordinates and steering vector
eld=zeros(eldof,1); % Initialize element displacement to zero
for m=1:eldof %

if g(m)==0 %
eld(m)=0.; %

else %
eld(m)=delta(g(m)); % Retrieve element displacement from

% the global displacement vector
end

end
%

for ig=1: nhp
[der,fun] = fmT6_quad(samp,ig); % Derivative of shape functions in local coordinates
jac=der*coord; % Compute Jacobian matrix
jac1=inv(jac); % Compute inverse of the Jacobian
deriv=jac1*der; % Derivative of shape functions in global coordinates
[bee,radius]=formbee_axi(deriv,nne,fun, coord,eldof); % Form matrix [B]
eps=bee*eld; % Compute strains
sigma=dee*eps ; % Compute stresses

end
SIGMA(i,:)=sigma ; % Store stresses for all elements

end
%
[ZX, ZY, Z_THETA, ZT] = Stresses_at_nodes_axi(SIGMA); U2 =
DISP(:,2);
%
%
% Plot stresses in the x_direction
%
cmin = min(ZT); cmax = max(ZT);
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FIGURE 10.8 Finite element mesh using the 6-node triangle.

%
caxis([cmin cmax]); patch(’Faces’, connec, ’Vertices’, geom,
’FaceVertexCData’,ZT,...

’Facecolor’,’interp’,’Marker’,’.’);
colorbar;

Figure 10.8 shows the finite element discretization of half the domain and the values of the
equivalent nodal loads. The domain is meshed with 6-node triangle. In total the mesh consists of
1073 nodes and 504 elements. The nodes are numbered along the y-direction with the first node
being at the origin. The loaded nodes are located using their coordinates, and the equivalent nodal
loads calculated with the formulas given in Figure 10.4.

10.5.1.1 Numerical Integration of the Stiffness Matrix

The stiffness matrix is evaluated as

[Ke] =
nhp∑
i=1

Wi[B(ξi, ηi)]T[D][B(ξi, ηi)]r(ξi, ηi)det[J(ξi, ηi)] (10.23)

1. For every element i = 1 to nel
2. Retrieve the coordinates of its nodes coord(nne, 2) and its steering vector g(eldof) using

the function elem_t6.m
3. Initialize the stiffness matrix to zero

a. Loop over the Hammer points ig = 1 to nhp
b. Retrieve the weight wi as samp(ig, 3)
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c. Use the function fmT6_quad.m to compute the shape functions, vector fun, and their
local derivatives, der, at the local coordinates ξ = samp(ig, 1) and η = samp(ig, 2)

d. Evaluate the Jacobian jac = der ∗ coord
e. Evaluate the determinant of the Jacobian as d = det(jac)
f. Compute the inverse of the Jacobian as jac1 = inv(jac)
g. Compute the derivatives of the shape functions with respect to the global coordinates x

and y as deriv = jac1 ∗ der
h. Use the function formbee_axi to form the strain matrix bee and calculate the radius r at

the integration point as r = ∑nne
j Njxj, where nne represents the number of nodes of the

element
i. Compute the stiffness matrix as ke = ke + wi ∗ bee′ ∗ dee ∗ bee ∗ r ∗ d∗

4. Assemble the stiffness matrix ke into the global matrix kk

Note that the elasticity matrix [D] is that given by Equation (10.7) for an axisymmetric conditions
and has a dimension 4 × 4. It is formed using the function formdax.m listed in Appendix A. The
strain matrix given by Equation (10.13) is evaluated using the function formbee_axi.m also listed in
Appendix A.

10.5.1.2 Results

Figures 10.9 through 10.12 show respectively the contours of the vertical displacement v, the
radial stress σrr, the vertical stress σzz, and the shear stress τrz obtained with the 6-node triangle
element.
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FIGURE 10.9 Contour plot of the vertical displacement.
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Contour plot of the radial stress σrr (kN/m2)
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FIGURE 10.10 Contour plot of the radial stress.
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FIGURE 10.11 Contour plot of the vertical stress.
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FIGURE 10.12 Contour plot of the shear stress.

10.5.2 COMPUTER CODE: AXI_SYM_Q8.m

The following program, AXI_SYM_Q8.m, is an adaptation of the plane stress/strain program
PLANE_Q8_MESH.m to axisymmetric conditions. The program is listed next and includes the
automatic mesh generation function Q8_mesh.m.

% THIS PROGRAM USES AN 8-NODDED QUADRILATERAL ELEMENT FOR THE LINEAR ELASTIC
% STATIC ANALYSIS OF AN AXISYMMETRIC PROBLEM. IT CONTAINS AN AUTOMATIC
% MESH GENERATION MODULE Q8_mesh.m
%
% Make these variables global so they can be shared by other functions
%
clc
clear all
global nnd nel nne nodof eldof n ngp
global geom connec dee nf Nodal_loads
global Length Width NXE NYE X_origin Y_origin dhx dhy
%
format long g
%
% To change the size of the problem or change elastic properties
% ALTER the q8_input_module.m
%
Length = 7.; % Length of the model
Width =9.; % Width
NXE = 14; % Number of rows in the x direction
NYE = 18; % Number of rows in the y direction
dhx = Length/NXE; % Element size in the r direction
dhy = Width/NYE; % Element size in the z direction
X_origin = 0. ; % r origin of the global coordinate system
Y_origin = 0. ; % z origin of the global coordinate system
%
nne = 8;
nodof = 2;
eldof = nne*nodof;
ngp = 3;
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%
Q8_mesh % Generate the mesh
%
E = 100000.; % Elastic modulus in kN/m2
vu = 0.35; % Poisson’s ratio
%
% Form the elastic matrix for plane stress
%
dee = formdax(E,vu);
%
%
% Boundary conditions
%
nf = ones(nnd, nodof); % Initialize the matrix nf to 1
%
% Restrain in all directions the nodes situated @
% (x = Length)
%
for i=1:nnd

if geom(i,1) == 0 || geom(i,1) == Length
nf(i,:) = [0 1]; % Restrain in direction r the nodes situated @

% (x = 0) and (x = Length)
end

%
if geom(i,2) == 0;
nf(i,:) = [0 0]; % Restrain in all directions the nodes situated @

% (y = 0) Rock substratum
end

end
%
% Counting of the free degrees of freedom
%
n=0;
for i=1:nnd

for j=1:nodof
if nf(i,j) ~= 0

n=n+1;
nf(i,j)=n;

end
end

end
%
% loading
%
Nodal_loads= zeros(nnd, 2); % Initialize the matrix of nodal loads to 0
%
% Apply an equivalent nodal load to the nodes located at
% (r = 0, z = 9.), (r = 0.25, z = 9.), and (r = 0.5, z = 9.)
% (r = .75, z = 9.), (r = 1., z = 9.)
%
pressure = 63.662 ; % kN/m^2
%
for i=1:nnd

if geom(i,1) == 0. && geom(i,2) == 9.
Nodal_loads(i,:) = pressure*[0. 0.];

elseif geom(i,1) == 0.25 && geom(i,2) == 9.
Nodal_loads(i,:) = pressure*[0. -0.0833];

elseif geom(i,1) == 0.5 && geom(i,2) == 9.
Nodal_loads(i,:) = pressure*[0. (-0.0833-0.0833)];

elseif geom(i,1) == 0.75 && geom(i,2) == 9.
Nodal_loads(i,:) = pressure*[0. -0.25];

elseif geom(i,1) == 1. && geom(i,2) == 9.
Nodal_loads(i,:) = pressure*[0. -0.0833];

end
end
%
%%%%%%%%%%%%%%%%%%%%%%%%%% End of input%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%
% Assemble the global force vector
%
fg=zeros(n,1);
for i=1: nnd

if nf(i,1) ~= 0
fg(nf(i,1))= Nodal_loads(i,1);

end
if nf(i,2) ~= 0

fg(nf(i,2))= Nodal_loads(i,2);
end

end
%
% Form the matrix containing the abscissas and the weights of Gauss points
%
samp=gauss(ngp);
%
% Numerical integration and assembly of the global stiffness matrix
%
% initialize the global stiffness matrix to zero
kk = zeros(n, n);
%
for i=1:nel
[coord,g] = elem_q8(i) ; % coordinates of the nodes of element i,

% and its steering vector
ke=zeros(eldof,eldof) ; % Initialize the element stiffness

% matrix to zero
for ig=1: ngp

wi = samp(ig,2);
for jg=1: ngp
wj=samp(jg,2);
[der,fun] = fmquad(samp, ig,jg); % Derivative of shape functions

% in local coordinates
jac=der*coord; % Compute Jacobian matrix
d=det(jac); % Compute determinant of Jacobian matrix
jac1=inv(jac); % Compute inverse of the Jacobian
deriv=jac1*der; % Derivative of shape functions in

% global coordinates
[bee,radius]=formbee_axi(deriv,nne,fun, coord,eldof); % Form matrix [B]
ke=ke + d*wi*wj*bee’*dee*bee*radius; % Integrate stiffness matrix

end
end
kk=form_kk(kk,ke, g); % assemble global stiffness matrix

end
%
%
%%%%%%%%%%%%%%%%%%%%%%% End of assembly %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
delta = kk\fg ; % solve for unknown displacements
disp(’node x_disp y_disp ’) %
for i=1: nnd %

if nf(i,1) == 0 %
x_disp =0.; %

else
x_disp = delta(nf(i,1)); %

end
%

if nf(i,2) == 0 %
y_disp = 0.; %

else
y_disp = delta(nf(i,2)); %

end
disp([i x_disp y_disp]) ; % Display displacements of each node
DISP(i,:) = [x_disp y_disp];
end
%
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%
ngp=1; % Calculate stresses and strains at

% the center of each element
samp=gauss(ngp);
%
for i=1:nel
[coord,g] = elem_q8(i); % coordinates of the nodes of element i,

% and its steering vector
eld=zeros(eldof,1); % Initialize element displacement to zero
for m=1:eldof %

if g(m)==0 %
eld(m)=0.; %

else %
eld(m)=delta(g(m)); % Retrieve element displacement from the

% global displacement vector
end

end
%
for ig=1: ngp

wi = samp(ig,2);
for jg=1: ngp

wj=samp(jg,2);
[der,fun] = fmquad(samp, ig,jg); % Derivative of shape functions in

% local coordinates
jac=der*coord; % Compute Jacobian matrix
jac1=inv(jac); % Compute inverse of the Jacobian
deriv=jac1*der; % Derivative of shape functions

% in global coordinates
[bee,radius]=formbee_axi(deriv,nne,fun, coord,eldof);%Form matrix [B]
eps=bee*eld % Compute strains
sigma=dee*eps % Compute stresses

end
end
SIGMA(i,:)=sigma ; % Store stresses for all elements

end
%
%
[ZX, ZY, Z_THETA, ZT] = stresses_at_nodes_axi(SIGMA);
%
%
% Plot stresses in the x_direction
%
U2 = DISP(:,2);
cmin = min(ZT);
cmax = max(ZT);
caxis([cmin cmax]);
patch(’Faces’, connec, ’Vertices’, geom, ’FaceVertexCData’,ZT,...

’Facecolor’,’interp’,’Marker’,’.’);
colorbar;

Figure 10.13 shows the finite element discretization of half the domain and the values of the
equivalent nodal loads. The domain is meshed with 8-node quadrilaterals. In total the mesh consists
of 821 nodes and 252 elements. The nodes are numbered along the y-direction with the first node
being at the origin. The loaded nodes are located using their coordinates, and the equivalent nodal
loads calculated with the formulas given in Figure 10.4.

10.5.2.1 Numerical Integration of the Stiffness Matrix

The stiffness matrix is evaluated using Gauss quadrature as

[Ke] =
+1�

−1

+1�
−1

[B(ξ, η)]T[D][B(ξ, η)]r(ξ, η)det[J(ξ, η)] dη dξ

=
ngp∑
i=1

ngp∑
j=1

WiWj[B(ξi, ηj)]T[D][B(ξi, ηj)]r(ξi, ηj)det[J(ξi, ηj)] (10.24)
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FIGURE 10.13 Finite element mesh using the 8-node quadrilateral.

For each element, it is evaluated as follows:

1. For every element i = 1 to nel
2. Retrieve the coordinates of its nodes coord(nne, 2) and its steering vector g(eldof) using

the function elem_Q8.m
3. Initialize the stiffness matrix to zero

a. Loop over the Gauss points ig = 1 to ngp
b. Retrieve the weight wi as samp(ig, 2)

i. Loop over the Gauss points jg = 1 to ngp
ii. Retrieve the weight wj as samp(jg, 2)

iii. Use the function fmquad.m to compute the shape functions, vector fun,
and their derivatives, matrix der, in local coordinates, ξ = samp(ig, 1) and
η =samp(jg, 1).

iv. Evaluate the Jacobian jac = der ∗ coord
v. Evaluate the determinant of the Jacobian as d = det(jac)

vi. Compute the inverse of the Jacobian as jac1 = inv(jac)
vii. Compute the derivatives of the shape functions with respect to the global coordinates

x and y as deriv = jac1 ∗ der
viii. Use the function formbee_axi to form the strain matrix bee and calculate the radius

r at the integration point as r = ∑nne
j Njxj

ix. Compute the stiffness matrix as ke = ke + d ∗ wi ∗ wj ∗ bee′ ∗ dee ∗ bee ∗ r
4. Assemble the stiffness matrix ke into the global matrix kk
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10.5.2.2 Results

Figures 10.14 through 10.17 show respectively the contours of the vertical displacement v, the
radial stress σrr, the vertical stress σzz, and the shear stress τrz obtained with the 6-node triangle
element.
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FIGURE 10.14 Contour plot of the vertical displacement.
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FIGURE 10.15 Contour plot of the radial stress.
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FIGURE 10.16 Contour plot of the vertical stress.
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FIGURE 10.17 Contour plot of the shear stress.
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10.6 ANALYSIS WITH ABAQUS USING THE 8-NODE QUADRILATERAL

In this section, we will analyze the circular footing shown in Figure 10.6 using the Abaqus interactive
edition. Taking advantage of symmetry, only half the model is analyzed. We will use an element size
of 0.5 m so that we could compare the results with those obtained previously.

Start Abaqus CAE. Click
on Create Model Database.
On the main menu, click
on File and set Set Work
Directory to choose your
working directory. Click on
Save As and name the file
FOOTING_Q8.cae. On the
left-hand-side menu, click on
Part to begin creating the
model. Name the part FOOT-
ING_Q8, check Axisymmet-
ric, check Deformable in the
type. Choose Shell as the
base feature. Enter an approx-
imate size of 20 m and click
on Continue. In the sketcher
menu, choose the Create-
Lines Rectangle icon to begin
drawing the geometry of the
footing. Make sure that the
sketch is to the right or to
the left of the centerline. Click
on Done in the bottom-left
corner of the viewport win-
dow (Figure 10.18).

FIGURE 10.18 Creating the FOOTING_Q8 Part.

Define a material named Dirt with an
elastic modulus of 100000 kN/m2 and
a Poisson’s ratio of 0.35. Next, click
on Sections to create a section named
Footing_section_Q8. In the Category
check Solid, and in the Type, check
Homogeneous. Click on Continue. In
the Edit Section dialog box, uncheck
Plane stress/strain thickness. Click on
OK (Figure 10.19).

FIGURE 10.19 Creating an axisymmetric section.
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Expand the menu under Parts
and FOOTING_Q8 and dou-
ble click on Section Assign-
ments. With the mouse select
the whole part. In the
Edit Section Assignments
dialog box, select Foot-
ing_section_Q8 and click on
OK (Figure 10.20).

FIGURE 10.20 Editing section assignments.

It will be useful to parti-
tion the top edge so that
we could apply the pressure
load over a length of 2 m.
Therefore, under the main
menu, expand Tools and click
on Partition. In the partition
dialog box, select Edge for
Type, and Enter parameter
for Method. In the command
line of the viewport enter
0.714285714285 = 5/7 as
shown in Figure 10.21. Click
on Create partition.

FIGURE 10.21 Edge partition.
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In the model tree, double
click on Mesh under the
FOOTING_Q8. In the main
menu, under Mesh, click on
Mesh Controls. In the dialog
box, check Quad for Ele-
ment shape and Structured
for Technique. Click on OK.
Under Mesh, click on Ele-
ment Type. In the dialog
box, select Standard for ele-
ment library, Quadratic for
geometric order. In Quad,
check Reduced integration.
The description of the ele-
ment CAX8R: A 8-node
biquadratic axisymmetric
quadrilateral, reduced inte-
gration can be seen in the
dialog box. Click on OK
(Figure 10.22). FIGURE 10.22 Mesh controls and element type.

In the main menu, under Seed,
click on Part. In the dialog
box, enter 0.5 for Approx-
imate global size. Click on
OK and on Done. In the main
menu, under Mesh, click on
Part. In the prompt area, click
on Yes (Figure 10.23).

FIGURE 10.23 Mesh.

© 2013 by Taylor & Francis Group, LLC



Axisymmetric Problems 375

In the model tree, expand
the Assembly and double
click on Instances. Select
FOOTING_Q8 for Parts and
click OK. In the model
tree, expand Steps and Ini-
tial and double click on BC.
Name the boundary condition
Centerline, select Displace-
ment/Rotation for the type,
and click on Continue. In
the viewport, with the mouse
select the centerline and click
on Continue. In the Edit
Boundary Condition, check
U1. Click OK. Repeat the pro-
cedure again, this time select
the right edge and click on
Continue. In the Edit Bound-
ary Condition, check U1.
Click OK. Repeat the proce-
dure again, this time select
the bottom edge and click on
Continue. In the Edit Bound-
ary Condition, check U1 and
U2. Click OK (Figure 10.24).

FIGURE 10.24 Imposing BC using geometry.

In the model tree, double
click on Steps. Name the step
Apply_loads. Set the proce-
dure to General and select
Static, General. Click on
Continue. Give the step a
description and click OK. In
the model tree, under steps,
and under Apply_loads, click
on Loads. Name the load
Pressure and select Pres-
sure as the type. Click on
Continue. In the viewport,
with the mouse select the left
part of the partitioned top
edge. In the Edit Load dia-
log box, enter 63.662 kN/m2.
Click OK (Figure 10.25).

FIGURE 10.25 Imposing loads using geometry.
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FIGURE 10.26 Contour of the vertical displacement.

FIGURE 10.27 Contour of the vertical stress σyy.
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Under Analysis, right click on Jobs and then click on Create.
In the Create Job dialog box, name the job FOOTING_Q8 and click on Continue. In the

Edit Job dialog box, enter a description for the job. Check Full analysis, select to run the job
in Background, and check to start it immediately. Click OK. Expand the tree under Jobs, right
click on FOOTING_Q8. Then, click on Submit. If you get the following message FOOTING_Q8
completed successfully in the bottom window, then your job is free of errors and was executed
properly.

Under the top menu, in the Module scroll to Visualization, and click to load Abaqus Viewer.
On the main menu, under File, click Open, navigate to your working directory and open the file
FOOTING_Q8.odb. It should have the same name as the job you submitted. Click on the icon Plot
on Undeformed shape. Under the main menu, select U and U2 to plot the vertical displacement
(Figure 10.26). It can be seen that the displacement contour is similar to that obtained with the
MATLAB� code (Figures 10.9 and 10.14).

Under the main menu, select S and S22 to plot σyy (Figure 10.27). Again, the contour is very
similar to that shown in Figure 10.16.
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11 Thin and Thick Plates

11.1 INTRODUCTION

Plates are very important structural elements. They are mainly used as slabs in buildings and bridge
decks. They are structural elements that are bound by two lateral surfaces. The dimensions of the
lateral surfaces are very large compared to the thickness of the plate. A plate may be thought of
as the two-dimensional equivalent of a beam. Plates are also generally subject to loads normal to
their plane.

11.2 THIN PLATES

11.2.1 DIFFERENTIAL EQUATION OF PLATES LOADED IN BENDING

The small deflection theory of plates attributed to Kirchhoff is based on the following assumptions:

1. The x–y plane coincides with the middle plane of the plate in the undeformed geometry.
2. The lateral dimension of the plate is at least 10 times its thickness.
3. The vertical displacement of any point of the plate can be taken equal to that of the point

(below or above it) in the middle plane.
4. A vertical element of the plate before bending remains perpendicular to the middle surface

of the plate after bending.
5. Strains are small: deflections are less than the order of (1/100) of the span length.
6. The strain of the middle surface is zero or negligible.

Considering the plate element shown in Figure 11.1, the in-plane displacements u and v,
respectively in the directions x and y, can be expressed as

u = −z
∂w

∂x
(11.1)

v = −z
∂w

∂y
(11.2)

where w represents the vertical displacement of the plate mid-plane.
Because of the assumption number 4, that is, “a vertical element of the plate before bend-

ing remains perpendicular to the middle surface of the plate after bending,” the transverse
shear deformation is negligible. The in-plane strains can therefore be written in terms of the
displacements as

⎧⎨
⎩

εxx

εyy

γxy

⎫⎬
⎭ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u

∂x
∂v

∂y
∂u

∂y
+ ∂v

∂x

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−z
∂2w

∂x2

−z
∂2w

∂y2

−2z
∂2w

∂x∂y

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

= −z

⎧⎨
⎩

χx

χy

χxy

⎫⎬
⎭ (11.3)

The vector {χ} = [χx χy χxy]T is called the vector of curvature or generalized strain.

379
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FIGURE 11.1 Deformed configuration of a thin plate in bending.
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FIGURE 11.2 Internal stresses in a thin plate. Moments and shear forces due to internal stresses in a thin plate.

q(x,y)

Mxx

Mxy

Mxy

Myy
Qx

Qy

z

y

x

FIGURE 11.3 Moments and shear forces due to internal stresses in a thin plate.

Internal stresses in plates produce bending moments and shear forces as illustrated in Figures 11.2
and 11.3. The moments and shear forces are the resultants of the stresses and are defined as acting
per unit length of plate. These internal actions are defined as

Mxx =
h/2�

−h/2

σxxz dz (11.4)
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Myy =
h/2�

−h/2

σyyz dz (11.5)

Mxy =
h/2�

−h/2

τxyz dz (11.6)

Qxx =
h/2�

−h/2

σxxdz (11.7)

Qyy =
h/2�

−h/2

σyydz (11.8)

In general, the force and moment intensities vary with the coordinates x and y of the middle
plane.

Assuming a state of plane stress conditions for plate bending,

{σ} = [D]{ε} (11.9)

with [D] given as

[D] = E

1 − ν2

⎡
⎢⎣

1 ν 0
ν 1 0

0 0
(1 − ν)

2

⎤
⎥⎦ (11.10)

and substituting for {ε} using Equation (11.3) yields the constitutive equation

{σ} = −z[D]{χ} (11.11)

Substituting for σxx, σyy, and τxy in Equation (11.4) and rearranging the results in a matrix notation
yields

{M} = h3

12
[D]{χ} (11.12)

Consider the equilibrium of the free body of the differential plate element shown in Figure 11.4.
Recalling that Qx represents force per unit length along the edge dy and requiring force equilibrium
in z direction results in

−Qxdy − Qydx +
(

Qx + ∂Qx

∂x
dx

)
dy +

(
Qy + ∂Qy

∂y
dy

)
dx + q(x, y)dxdy = 0 (11.13)

which upon dividing by dxdy becomes

∂Qx

∂x
+ ∂Qy

∂y
+ q(x, y) = 0 (11.14)

Moment equilibrium about the x-axis leads to

∂Mxy

∂x
+ ∂Myy

∂y
= Qy (11.15)
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FIGURE 11.4 Free body diagram of a plate element.

Moment equilibrium about the y-axis leads to

∂Mxy

∂y
+ ∂Mxx

∂x
= Qx (11.16)

Substituting (11.15) and (11.16) in (11.14) results in the governing equation

∂2Mxx

∂x2
+ ∂2Mxy

∂x∂y
+ ∂2Myy

∂y2
+ q(x, y) = 0 (11.17)

Since no relations regarding material behavior have entered Equation (11.17), it is valid for all types
of materials.

11.2.2 GOVERNING EQUATION IN TERMS OF DISPLACEMENT VARIABLES

Substitution of Equation (11.12) into the equilibrium equation (11.17) leads to the general differential
equation of simple rectangular plates:

∂4w

∂x4
+ 2

∂4w

∂2x∂2y
+ ∂4w

∂y4
= q(x, y)

Dr

(11.18)

which is often written as

∇4w = q

Dr

(11.19)

with

Dr = Eh3

12(1 − ν2)
(11.20)

The solution of a simple rectangular plate in bending requires finding a function w(x, y) that satisfies
Equation (11.18) and also the boundary conditions of the specific problem.
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11.3 THICK PLATE THEORY OR MINDLIN PLATE THEORY

As explained previously, the Kirchhoff plate theory does not include shear deformations. This is an
acceptable assumption for very thin plates, but it can lead to errors, which are not negligible in thick
plates; most of reinforced concrete slabs are classified in this latter category.

In thick plates, the assumption that a vertical element of the plate before bending remains
perpendicular to the middle surface of the plate after bending is relaxed. Transverse normals may
rotate without remaining normal to the mid-plane. A line originally normal to the middle plane
will develop rotation components θx relative to the middle plane after deformation as shown in
Figure 11.5. A similar definition holds for θy. Hence, the displacement field becomes

u = zθx (11.21)

v = zθy (11.22)

w = w(x, y) (11.23)

The strains associated with these displacements are given as

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

εxx

εyy

γxy

γyz

γzx

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z
∂θx

∂x

z
∂θy

∂y

z
(∂θx

∂y
+ ∂θy

∂x

)

z
(
θy − ∂w

∂y

)

z
(
θx − ∂w

∂x

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.24)

These equations are the main equations of the Mindlin plate theory. The theory accounts for
transverse shear deformations and is applicable for moderately thick plates. Unlike in thin plate
theory, it is important to notice that the transverse displacement w(x, y) and slopes θx, θy are inde-
pendent. Notice also that the thick plate theory reduces to thin plate theory if θx = − ∂w

∂x
and

θy = − ∂w
∂y

.

y

wz

–

x

∂w
∂x

– ∂w
∂x

θx

FIGURE 11.5 Deformed configuration of a thick plate in bending.
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11.3.1 STRESS–STRAIN RELATIONSHIP

Assuming the material is homogeneous and isotropic, the plane stresses σxx, σyy, and τxy are related
to the strains through the elasticity matrix [D] given in Equation (11.10). The shear strains τyz and
τxz are related to the shear strains γyz and γxz through

{
τyz

τxz

}
=

[
G 0
0 G

] {
γyz

γxz

}
(11.25)

with

G = E

2(1 + ν)
(11.26)

The moment curvature relations for the Mindlin plate theory are obtained by combining (11.4),
(11.9), (11.10), (11.24), and (11.25); that is

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Mx

My

Mxy

Qy

Qx

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎣

Dr ν × Dr 0 0 0
ν × Dr Dr 0 0 0

0 0
Dr(1 − ν)

2
0 0

0 0 0 Gh 0
0 0 0 0 Gh

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂θx

∂x
∂θy

∂y(∂θx

∂y
+ ∂θy

∂x

)
(
θy − ∂w

∂y

)
(
θx − ∂w

∂x

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.27)

with

Dr = Eh3

12(1 − ν2)
(11.28)

Equation (11.27) can be written more compactly as

{M} = [DM]{χ} (11.29)

The total strain energy of the plate is given as

U = 1

2

�
A

{χ}T[DM]{χ} dA (11.30)

Equation (11.30) includes both the contributions from bending and shear energies. Hence, it can be
decomposed as

U = UB + US = 1

2

�
A

{χB}T[DB]{χB} dA + κ

2

�
A

{χS}T[DS]{χS} dA (11.31)

{χB} =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂θx

∂x
∂θy

∂y(∂θx

∂y
+ ∂θy

∂x

)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(11.32)
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{χS} =

⎧⎪⎨
⎪⎩

(
θy − ∂w

∂y

)
(
θx − ∂w

∂x

)
⎫⎪⎬
⎪⎭ (11.33)

[DB] = Dr

⎡
⎢⎣

1 ν 0
ν 1 0

0 0
(1 − ν)

2

⎤
⎥⎦ (11.34)

[DS] = G

[
h 0
0 h

]
(11.35)

and κ is the shear energy correction factor equal to 5/6.

11.4 LINEAR ELASTIC FINITE ELEMENT ANALYSIS OF PLATES

11.4.1 FINITE ELEMENT FORMULATION FOR THIN PLATES

The earliest finite elements for plates were based on the Kirchhoff theory, and their formulation
required C1 continuity. This required that the function w(x, y) and its derivatives to be continuous
across elements boundary to satisfy compatibility conditions, that is, the function w(x, y) should
satisfy the necessary identity of continuous functions:

∂2w

∂x∂y
= ∂2w

∂y∂x
(11.36)

A conventional plate element has three degrees of freedom per node: a vertical displacement w and
two rotations. For small displacements, the rotations θx and θy are respectively the first derivatives
of the vertical displacement w with respect to x and y:

θx = ∂w

∂x
(11.37)

θy = ∂w

∂y
(11.38)

The corresponding force components are the lateral force Fz and the moments Mx and My. The
rotations θx and θy should be continuous all over the elements, otherwise the model will develop
“kinks”: no continuation in the slope.

11.4.1.1 Triangular Element

One of the earliest plate element is the three-node triangular plate bending element shown in
Figure 11.6. It is important to note that θx and Mx are respectively the rotation and moment around
the axis y. Any arbitrary point of the element has a deflection w(x, y). Therefore, the displacement
w(x, y) is a continuous function of the variables x and y. At the nodes 1, 2, and 3, the function w(x, y)
should not only take on respectively the values w1, w2, and w3, but should be continuous enough
to have finite derivatives θx1 and θy1, θx2 and θy2, and θx3 and θy3. To satisfy these requirements, a
general approximation of the form shown in Equation (11.39) is used:

w(x, y) = α1 + α2x + α3y + α4x
2 + α5xy + α6y

2 + α7x3 + α8(x
2y + xy2) + α9y3 (11.39)

Notice that there are nine parameters αi as there are nine nodal variables. However, expression
(11.39) does not constitute a complete polynomial, which contains 10 terms. The terms x2y and xy2
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FIGURE 11.6 Three-node triangular plate bending element.

had to be grouped to make nine terms, and they do not vary independently. As a result, this element is
known to behave badly, particularly when two sides of the triangle are parallel to the axes x and y [6].

The derivatives θx and θy are respectively obtained as

∂w

∂x
= α2 + 2α4x + α5y + 3α7x2 + α8(2xy + y2) (11.40)

∂w

∂y
= α3 + α5x + 2α6y + α8(x

2 + 2xy) + 3α9y2 (11.41)

The general approximation (11.39) can be transformed into a nodal approximation using the method
described in Chapter 7.

• At node 1, x = x1, y = y1, w(x1, y1) = w1, θx = θx1 and θy = θx1

• At node 2, x = x2, y = y2, w(x2, y2) = w2, θx = θx2 and θy = θx2

• At node 3, x = x3, y = y3, w(x3, y3) = w3, θx = θx3 and θy = θx3

Substituting in Equations (11.39) and (11.40) yields
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1

θx1

θy1

w2

θx2

θy2

w3

θx3

θy3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x1 y1 x2
1 x1y1 y2

1 x3
1 x2

1y1 + x1y2
1 y3

1

0 1 0 2x1 y1 0 3x2
1 2x1y1 + y2

1 0
0 0 1 0 x1 2y1 0 x2

1 + 2x1y1 3y2
1

1 x2 y2 x2
2 x2y2 y2

2 x3
2 x2

2y2 + x2y2
2 y3

2

0 1 0 2x2 y2 0 3x2
2 2x2y2 + y2

2 0
0 0 1 0 x2 2y2 0 x2

2 + 2x2y2 3y2
2

1 x3 y3 x2
3 x3y3 y2

3 x3
3 x2

3y3 + x3y2
3 y3

3

0 1 0 2x3 y3 0 3x2
3 2x3y3 + y2

3 0
0 0 1 0 x3 2y3 0 x2

3 + 2x3y3 3y2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1

α2

α3

α4

α5

α6

α7

α8

α9

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(11.42)

or in a more compact form as

{ae} = [A]{α} (11.43)

Inverting Equation (11.43) and substituting in Equation (11.39) yields

w(x, y) = [
1 x y x2 xy y2 x3 (x2y + xy2) y3

] [A]−1{ae} (11.44)

or simply as

w(x, y) = [N(x, y)] {ae} (11.45)
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with

[N(x, y)] = [
1 x y x2 xy y2 x3 (x2y + xy2) y3

] [A]−1 (11.46)

Expression (11.45) is the equivalent nodal approximation. Substituting in Equation (11.3) for the
in-plane strains yields

{ε} = [B] {ae} (11.47)

with

= −z

⎡
⎣0 0 0 2 0 0 6x 2y 0

0 0 0 0 0 2 0 2x 6y
0 0 0 0 2 0 0 4(x + y) 0

⎤
⎦ [A]−1 (11.48)

The stiffness matrix is obtained in the usual manner as

[Ke] =
�
Ae

�
z

[B]T[D][B]dzdA (11.49)

11.4.1.2 Rectangular Element

Consider the rectangular plate element shown in Figure 11.7. The element has four nodes and 12 dof
in total. A trial function for the unknown w(x, y) will contain 12 parameters:

w(x, y) = α1 + α2x + α3y + α4x2 + α5xy + α6y
2 + α7x

3 + α8x
2y + α9xy2

+ α10y
3 + α11yx3 + α12xy3 (11.50)

∂w

∂x
= α2 + 2α4x + α5y + 3α7x2 + 2α8xy + α9y

2 + 3α11x2y + α12y3 (11.51)

∂w

∂y
= α3 + α5x + 2α6y + α8x

2 + 2α9yx + 3α10y2 + α11x
3 + 3α12y2x (11.52)

It can be seen that both w(x, y) and its derivatives are defined by cubic polynomials. As a cubic
is uniquely defined by four constants, the two end values of the displacements and slopes will
therefore define the displacements uniquely along any boundary. However, this is not the case for
the derivatives, since only two end values of the slopes exist, the cubic is not specified uniquely. And in
general a discontinuity of normal slope will occur. The function is therefore called “non-conforming.”

y

x

34

21
z

θx
θy

w

FIGURE 11.7 Four-node rectangular plate bending element.
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11.4.2 FINITE ELEMENT FORMULATION FOR THICK PLATES

More recently, formulated elements use the Mindlin plate theory. From a FEM point of view, this
is very important since the rotations θy and θx are independent from w(x, y), therefore not requiring
C1 continuity. This greatly simplifies the formulation. As a result, C0 isoparametric shape functions
can be used for the thick plate element formulation. The transverse displacement and slopes can be
interpolated independently using the same shape functions as

w =
n∑

i=1

Ni(ξ, η)wi (11.53)

θx =
n∑

i=1

Ni(ξ, η)θxi (11.54)

θy =
n∑

i=1

Ni(ξ, η)θyi (11.55)

where n represents the number of nodes.
There are three degrees of freedom at each node: w, θx, and θy. The curvatures in Equations (11.32)

and (11.33) are defined in terms of the nodal unknowns as

{χ}B = [LB][N]{a} (11.56)

with

[LB] =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
∂

∂x
0

0 0
∂

∂y

0
∂

∂y

∂

∂x

⎤
⎥⎥⎥⎥⎥⎥⎦

(11.57)

and

{χ}S = [LS][N]{a} (11.58)

with

[LS] =
⎡
⎢⎣

− ∂

∂y
0 1

− ∂

∂x
1 0

⎤
⎥⎦ (11.59)

The matrix of the shape functions [N] is given as

[N] =
⎡
⎣N1 0 0 | . . . . . . . . . | Nn 0 0

0 N1 0 | . . . . . . . . . | 0 Nn 0
0 0 N1 | . . . . . . . . . | 0 0 Nn

⎤
⎦ (11.60)

and the vector of nodal unknowns as

{a} = [
w1 θx1 θy1 | . . . . . . . . . | wn θxn θyn

]T
(11.61)
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Equations (11.56) and (11.58) can be rewritten in the usual manner as

{χ}B = [BB]{a} (11.62)

with

[BB] =

⎡
⎢⎢⎢⎢⎢⎣

0
∂N1

∂x
0 | . . . . . . . . . | 0

∂Nn

∂x
0

0 0
∂N1

∂y
| . . . . . . . . . | 0 0

∂Nn

∂y

0
∂N1

∂y

∂N1

∂x
| . . . . . . . . . | 0

∂Nn

∂y

∂Nn

∂x

⎤
⎥⎥⎥⎥⎥⎦

(11.63)

and

{χ}S = [BS]{a} (11.64)

with

[BS] =
⎡
⎢⎣

−∂N1

∂y
0 N1 | . . . . . . . . . | −∂Nn

∂y
0 Nn

−∂N1

∂x
N1 0 | . . . . . . . . . | −∂Nn

∂x
Nn 0

⎤
⎥⎦ (11.65)

It follows therefore that the stiffness matrix is split into two matrices: one to model bending and the
other to model shear:

[Ke] = [KB] + [KS] =
�
Ae

[BB]T[DB][BB] dA + κ
�
Ae

[BS]T[DS][BS] dA (11.66)

Remark: It is important to note that the shear stiffness [KS] is a function of h since [DS] (Equa-
tion (11.35)) is a function of h, and the bending stiffness [KB] is a function of h3 since [DB]
(Equations (11.27) and (11.34)) is a function of h3. A consequence of this is that the shear energy
dominates as the thickness of the plate becomes very small compared to its side length. This is called
shear locking. One way of resolving this problem is to under integrate the shear energy term. For
example, if the 8 node quadrilateral is used, then the bending energy is to be integrated with 3 × 3
Gauss points, while the shear energy is to be integrated only with a 2 × 2 rule.

11.5 BOUNDARY CONDITIONS

Given a rectangular plate with dimensions a×b×h as shown in Figure 11.8. The governing equation
of the bending behavior of a thin plate is described by a fourth-order differential equation. Hence,
two boundary conditions have to be specified on each edge.

11.5.1 SIMPLY SUPPORTED EDGE

If the edge x = a is simply supported, the deflection w(x=a) along this edge must be zero. At the same
time, the edge can rotate freely with respect to the support, that is, there is no bending moment Mxx

along this edge:

(w)x=a = 0 and (Mxx)x=a = −Dr

(∂2w

∂x2
+ ν

∂2w

∂y2

)
= 0 (11.67)
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FIGURE 11.8 Plate boundary conditions.

The condition w(x=a) = 0 along the edge x = a means also that ∂w
∂y

= ∂2w
∂y2 = 0 along that edge. The

boundary conditions for a simply supported edge may also be written as

(w)x=a = 0 and
∂2w

∂x2
= 0 (11.68)

The first boundary condition in (11.68) is a kinematic boundary condition and the second one is a
dynamic or natural boundary condition. In FEA, only the kinematic boundary conditions needs to
be imposed, the natural boundary condition is incorporated in the principle of virtual work.

11.5.2 BUILT-IN OR CLAMPED EDGE

If the edge x = a is built-in or clamped, along this edge the deflection and the slope of the middle
plane must be zero; that is,

(w)x=a = 0 and
∂w

∂x
= 0 (11.69)

These boundary conditions are both kinematic and need to be imposed.

11.5.3 FREE EDGE

If the edge x = a is entirely free, it is natural to assume that along this edge there are no bending
and twisting moments, and also no shear force; that is,

(Mxx)x=a = (Mxy)x=a = (Qxz)x=a = 0 (11.70)

Within the thin plate theory, these three conditions are combined into two conditions, namely,

(Mxx)x=a = 0 and
(

Qxz + Mxy

∂y

)
x=a

= 0 (11.71)

The term Qxz + Mxy

∂y
is called the “effective shear force” or the “Kirchhoff shear force.” The boundary

conditions at a free edge are all natural and do not to be imposed.

11.6 COMPUTER PROGRAM FOR THICK PLATES USING THE 8-NODE
QUADRILATERAL

11.6.1 MAIN PROGRAM: THICK_PLATE_Q8.m

Consider the simply supported square plate shown in Figure 11.9, which has an exact analytical
solution [5]. Find the deflection at the center if the plate is subjected to a concentrated load of 1000 lb
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FIGURE 11.9 Simply supported plate on all edges.

(4448.2 N) at the center. The size of the plate is 36 × 36 in.2 (914.4 × 914.4 mm2) and the thickness
is 0.25 in. (6.35) mm. It is made of steel, E = 30 × 106 psi (206843 MPa) and ν = 0.3. The main
program Thick_plate_Q8.m is listed next.

% THIS PROGRAM USES AN 8-NODDED QUADRILATERAL ELEMENT FOR THE LINEAR ELASTIC
% STATIC ANALYSIS OF A THICK PLATE IN BENDING
%
% Make these variables global so they can be shared by other functions
%
clc
clear all
%
global nnd nel nne nodof eldof n ngpb ngps global geom connec deeb
dees nf load dim
%
format long g
%
% To cchange the size of the problem or change the elastic properties
% ALTER the PlateQ8_input_module.m
%
dim = 2;
nne = 8;
nodof = 3;
eldof = nne*nodof;
%
% Plate_Q8_input_module
Length = 18.; % Length of the in x-direction
Width = 18.; % Width of the model in y-direction
NXE = 9; % Number of rows in the x direction
NYE = 9; % Number of rows in the y direction
dhx = Length/NXE; % Element size in the x direction
dhy = Width/NYE; % Element size in the y direction
X_origin = 0. ; % x origin of the global coordinate system
Y_origin = 0. ; % y origin of the global coordinate system
%
thick = 0.25; % Thickness of plate
ngpb = 3; % number of Gauss points bending
ngps = 2; % number of Gauss points for shear
%
Q8_mesh % Generate the mesh
%
E = 30.e+6; % Elastic modulus in kN/m2
vu = 0.3; % Poisson’s ratio
%
% Form the matrix of elastic properties
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%
deeb=formdeeb(E,vu,thick); % Matrix of elastic properties for plate bending
dees=formdees(E,vu,thick); % Matrix of elastic properties for plate shear
%
% Boundary conditions
%
nf = ones(nnd, nodof); % Initialize the matrix nf to 1
%
for i=1:nnd
if geom(i,1) == 0

nf(i,1) = 0 ; % Restrain in direction w
nf(i,3) = 0 ; % Restrain rotation theta_y (around x)

elseif geom(i,2) == 0
nf(i,1) = 0. ; % Restrain displacement w
nf(i,2) = 0. ; % Restrain rotation theta_x (around y)

elseif geom(i,1) == Length
nf(i,2) = 0. ; % Restrain rotation theta_x (around y)

elseif geom(i,2) == Width
nf(i,3) = 0. ; % Restrain rotation theta_y (around x)

end
end
%
% Counting of the free degrees of freedom
%
n=0;
for i=1:nnd

for j=1:nodof
if nf(i,j) ~= 0

n=n+1;
nf(i,j)=n;

end
end

end
disp (‘Nodal freedom’)
nf
disp (‘Total number of active degrees of freedom’)
n
%
% loading
%
load = zeros(nnd, 3);
%
for i=1:nnd

if geom(i,1) == Length && geom(i,2) == Width
load(i,1) = - 1000/4; % Vertical load of 250 lb on the center node
end

end
%
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%% End of input%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% Assemble the global force vector
%
fg=zeros(n,1);
for i=1: nnd

for j=1:nodof
if nf(i,j) ~= 0

fg(nf(i,j))= load(i,j);
end
end

end
%
% Form the matrix containing the abscissas and the weights of Gauss points
%
sampb=gauss(ngpb); samps=gauss(ngps);
%
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% Numerical integration and assembly of the global stiffness matrix
%
% initialize the global stiffness matrix to zero
kk = zeros(n, n);
%
for i=1:nel

[coord,g] = platelem_q8(i) ; % coordinates of the nodes of element i,
% and its steering vector

keb=zeros(eldof,eldof) ; % Initialize the element bending
% stiffness matrix to zero

kes=zeros(eldof,eldof) ; % Initialize the element Shear
% stiffness matrix to zero

%
% Integrate element bending stiffness and assemble it in global matrix
%
for ig=1: ngpb

wi = sampb(ig,2);
for jg=1: ngpb

wj=sampb(jg,2);
[der,fun] = fmquad(sampb, ig,jg); % Derivative of shape functions

% in local coordinates
jac=der*coord; % Compute Jacobian matrix
d=det(jac); % Compute the determinant of

% Jacobian matrix
jac1=inv(jac); % Compute inverse of the Jacobian
deriv=jac1*der; % Derivative of shape functions

% in global coordinates
beeb=formbeeb(deriv,nne,eldof); % Form matrix [B]
keb=keb + d*wi*wj*beeb’*deeb*beeb; % Integrate stiffness matrix

end
end
kk=form_kk(kk,keb, g); % assemble global stiffness matrix
%
% Integrate element Shear stiffness and assemble it in global matrix
%
for ig=1: ngps

wi = samps(ig,2);
for jg=1: ngps

wj=samps(jg,2);
[der,fun] = fmquad(samps, ig,jg); % Derivative of shape functions

% in local coordinates
jac=der*coord; % Compute Jacobian matrix
d=det(jac); % Compute determinant of

% Jacobian matrix
jac1=inv(jac); % Compute inverse of the

% Jacobian
deriv=jac1*der; % Derivative of shape functions

% in global coordinates
bees=formbees(deriv,fun,nne,eldof); % Form matrix [B]
kes=kes + (5/6)*d*wi*wj*bees’*dees*bees; % Integrate stiffness matrix

end
end
kk=form_kk(kk,kes, g); % assemble global stiffness matrix

end
%
%
%%%%%%%%%%%%%%%%%%%%%%% End of assembly %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
delta = kk\fg % solve for unknown displacements

format short e
disp(‘node w_disp x_slope y_slope ’) %
for i=1: nnd %

if nf(i,1) == 0 %
w_disp =0.; %

else
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w_disp = delta(nf(i,1)); %
end

%
if nf(i,2) == 0 %

x_slope = 0.; %
else

x_slope = delta(nf(i,2)); %
end

%
if nf(i,3) == 0 %

y_slope = 0.; %
else

y_slope = delta(nf(i,3)); %
end

disp([i w_disp x_slope y_slope]) % Display displacements of each node
DISP(i,:) = [ w_disp x_slope y_slope];
end
%
%
%
ngp=1; % Calculate moments and shear forces

% the center of each element
samp=gauss(ngp);
%
for i=1:nel
[coord,g] = platelem_q8(i); % coordinates of the nodes of element i,

% and its steering vector
eld=zeros(eldof,1); % Initialize element displacement to zero
for m=1:eldof %

if g(m)==0 %
eld(m)=0.; %

else %
eld(m)=delta(g(m)); % Retrieve element displacement from the

% global displacement vector
end

end
%
for ig=1: ngp

wi = samp(ig,2);
for jg=1: ngp

wj=samp(jg,2);
[der,fun] = fmquad(samp, ig,jg); % Derivative of shape functions

% in local coordinates
jac=der*coord; % Compute Jacobian matrix
d=det(jac); % Compute the determinant of

% Jacobian matrix
jac1=inv(jac); % Compute inverse of the Jacobian
deriv=jac1*der; % Derivative of shape functions

% in global coordinates
%

beeb=formbeeb(deriv,nne,eldof); % Form matrix [B_b]
chi_b = beeb*eld ; % compute bending curvatures
Moment = deeb*chi_b ; % Compute moments
bees=formbees(deriv,fun,nne,eldof); % Form matrix [B_s]
chi_s = bees*eld ; % compute shear curvatures
Shear = dees*chi_s ; % Compute shera forces

end
end
Element_Forces(i,:)=[Moment’ Shear’];

end
%
W = DISP(:,1);
[MX, MY, MXY, QX, QY] = Forces_at_nodes_plate(Element_Forces);
%
cmin = min(W);
cmax = max(W);
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FIGURE 11.10 Finite element mesh of one quadrant of the simply supported plate.

caxis([cmin cmax]);
patch(‘Faces’,
connec, ‘Vertices’, geom, ‘FaceVertexCData’,W,...

‘Facecolor’,‘interp’,‘Marker’,’.’);
colorbar;

Because of symmetry only one quadrant of the plate is discretized. The finite element mesh is shown
in Figure 11.10 and generated using the function mesh_Q8.m. Both the nodes and the elements are
numbered in the y-direction. In total there are 282 nodes and 81 elements.

11.6.2 DATA PREPARATION

11.6.2.1 Stiffness Matrices

Note two different integrations schemes are used: one consisting of a 3 × 3 rule, ngpb = 3, to
integrate the flexural matrix deeb, and the other consisting of a 2 × 2 rule, ngps = 2, to integrate
the shear stiffness matrix dees. The matrices are respectively formed with the functions formdeeb.m
and formdees.m listed in Appendix A.

11.6.2.2 Boundary Conditions

The boundary conditions are given as follows:

Edge x = 0 w = 0 θy = 0 Edge x = 18 in. θx = 0

Edge y = 0 w = 0 θx = 0 Edge y = 18 in. θy = 0

They are introduced as follows:

• For all the nodes located at x = 0, restrain the degree of freedom No. 1 corresponding to
the vertical translation, and the degree of freedom No. 3 corresponding to the rotation θy

around the axis x.
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• For all the nodes located at y = 0, restrain the degree of freedom No. 1 corresponding to
the vertical translation, and the degree of freedom No. 2 corresponding to the rotation θx

around the axis y.
• For all the nodes located at x = Length, the length of the quarter plate, that is, restrain the

degree of freedom No. 2 corresponding to the rotation θx around the axis y.
• For all the nodes located at y = Width, the width of the quarter plate, that is, restrain the

degree of freedom No. 3 corresponding to the rotation θy around the axis x.

11.6.2.3 Loading

A quarter of the 1000. lb load is applied at node 282 in the opposite z-direction. This node is located
by its coordinates.

File: Plate_Q8_input_module.m
%
%%%%%%%%%%%%%%%%%%%%%%%%%% Beginning of data input %%%%%%%%%%%%%%%%%%%%%%%
%
global nnd nel nne nodof eldof n ngpb ngps
global geom connec deeb dees nf load dim

%
dim=2; % Dimension
nnd = 21 ; % Number of nodes:
nel = 4; % Number of elements:
nne = 8 ; % Number of nodes per element:
nodof =3; % Number of degrees of freedom per node
ngpb = 3; % number of Gauss points bending
ngps = 2; % number of Gauss points shear
eldof = nne*nodof; % Number of degrees of freedom per element
%
% Thickness of the domain
thick = 0.25;
%
% Nodes coordinates x and y
geom = [0.0 18; ... % x and y coordinates of node 1

0.0 13.5; ... % x and y coordinates of node 2
0.0 9; ... % x and y coordinates of node 3
0.0 4.5; ... % x and y coordinates of node 4
0.0 0; ... % x and y coordinates of node 5
4.5 18; ... % x and y coordinates of node 6
4.5 9.; ... % x and y coordinates of node 7
4.5 0; ... % x and y coordinates of node 8
9 18; ... % x and y coordinates of node 9
9 13.5; ... % x and y coordinates of node 10
9 9; ... % x and y coordinates of node 11
9 4.5; ... % x and y coordinates of node 12
9 0.; ... % x and y coordinates of node 13
13.5 18; ... % x and y coordinates of node 14
13.5 9; ... % x and y coordinates of node 15
13.5 0.; ... % x and y coordinates of node 16
18 18; ... % x and y coordinates of node 17
18 13.5; ... % x and y coordinates of node 18
18 9; ... % x and y coordinates of node 19
18 4.5; ... % x and y coordinates of node 20
18 0.]; % x and y coordinates of node 21

%
disp (‘Nodes X-Y coordinates’)
geom
%
% Element connectivity
connec= [ 1 2 3 7 11 10 9 6;... % Element 1

3 4 5 8 13 12 11 7;... % Element 2
9 10 11 15 19 18 17 14;... % Element 3
11 12 13 16 21 20 19 15]; % Element 4
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disp (‘Elements connectivity’)
connec
%
% Material properties
%
E=30.e+6; vu=0.3; % Young’s modulus and Poisson’s ration
%
% Form the matrix of elastic properties
%
deeb=formdeeb(E,vu,thick); % Matrix of elastic properties for plate bending
dees=formdees(E,vu,thick); % Matrix of elastic properties for plate shear
%
% Boundary conditions
%
nf = ones(nnd, nodof); % Initialize the matrix nf to 1
nf(1,1) = 0; nf(1,3)=0;
nf(2,1) = 0; nf(2,3)=0;
nf(3,1) = 0; nf(3,3)=0;
nf(4,1) = 0; nf(4,3)=0;
nf(5,1) = 0; nf(5,2)=0; nf(5,3)=0;
nf(6,3)=0;
nf(8,1)=0; nf(8,2)=0;
nf(9,3)=0;
nf(13,1)=0; nf(13,2)=0;
nf(14,3)=0
nf(16,1)=0; nf(16,2)=0;
nf(17,2)=0;nf(17,3)=0;
nf(18,2)=0;
nf(19,2)=0;
nf(20,2)=0;
nf(21,1)=0;nf(21,2)=0;
%
% Counting of the free degrees of freedom
%
n=0;
for i=1:nnd

for j=1:nodof
if nf(i,j) ~= 0

n=n+1;
nf(i,j)=n;

end
end

end
disp (‘Nodal freedom’)
nf
disp (‘Total number of active degrees of freedom’)
n
%
% loading
%
load = zeros(nnd, 3);
load(17,1) = 1000/4; % Vertical load of 250 lb on node 17
%
% End input

11.6.2.4 Numerical Integration of the Stiffness Matrix

The stiffness matrix is given by Equation (11.66). For each element, it is computed as follows:

1. For every element i = 1 to nel
2. Retrieve the coordinates of its nodes coord(nne, 2) and its steering vector g(eldof) using

the function platelem_q8.m
3. Initialize the stiffness matrices to zero
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a. Loop over the Gauss points ig = 1 to ngpb
b. Retrieve the weight wi as sampb(ig, 2)

i. Loop over the Gauss points jg = 1 to ngpb
ii. Retrieve the weight wj as sampb(jg, 2)

iii. Use the function fmquad.m to compute the shape functions, vector fun,
and their derivatives, matrix der, in local coordinates, ξ = sampb(ig, 1) and
η = sampb(jg, 1)

iv. Evaluate the Jacobian jac = der ∗ coord
v. Evaluate the determinant of the Jacobian as d = det(jac)

vi. Compute the inverse of the Jacobian as jac1 = inv(jac)
vii. Compute the derivatives of the shape functions with respect to the global coordinates

x and y as deriv = jac1 ∗ der
viii. Use the function formbeeb.m to form the strain matrix beeb

ix. Compute the stiffness matrix as keb = keb + d ∗ wi ∗ wj ∗ beeb′ ∗ deeb ∗ beeb
4. Assemble the stiffness matrix keb into the global matrix kk

a. Loop over the Gauss points ig = 1 to ngps
b. Retrieve the weight wi as samps(ig, 2)

i. Loop over the Gauss points jg = 1 to ngps
ii. Retrieve the weight wj as samps(jg, 2)

iii. Use the function fmquad.m to compute the shape functions, vector fun,
and their derivatives, matrix der, in local coordinates, ξ = samps(ig, 1) and
η = samps(jg, 1).

iv. Evaluate the Jacobian jac = der ∗ coord
v. Evaluate the determinant of the Jacobian as d = det(jac)

vi. Compute the inverse of the Jacobian as jac1 = inv(jac)
vii. Compute the derivatives of the shape functions with respect to the global

coordinates x and y as deriv = jac1 ∗ der
viii. Use the function formbees.m to form the strain matrix bees

ix. Compute the stiffness matrix as kes = kes + d ∗ wi ∗ wj ∗ bees′ ∗ dees ∗ bees
5. Assemble the stiffness matrix kes into the global matrix kk

The functions formbeeb.m and formbees.m, which form the flexural and shear strain matrices, are
listed in Appendix A.

11.6.3 RESULTS

11.6.3.1 Determination of the Resulting Moments and Shear Forces

Once the global equations are solved or the global displacement, for each element we retrieve its
nodal displacements and calculate the resulting moments and shear forces at its center. For such we
use only one Gauss point as detailed next:

1. For every element i = 1 to nel
2. Retrieve the coordinates of its nodes coord(nne, 2) and its steering vector g(eldof) using

the function platelem_q8.m
3. Retrieve its vector of nodal displacements eld(eldof)

a. Loop over the Gauss points ig = 1 to ngp
b. Retrieve the weight wi as samp(ig, 2)

i. Loop over the Gauss points jg = 1 to ngp
ii. Retrieve the weight wj as samp(jg, 2)
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iii. Use the function fmquad.m to compute the shape functions, vector fun, and their
derivatives, matrix der, in local coordinates, ξ = samp(ig, 1) and η = samp(jg, 1)

iv. Evaluate the Jacobian jac = der ∗ coord
v. Evaluate the determinant of the Jacobian as d = det(jac)

vi. Compute the inverse of the Jacobian as jac1 = inv(jac)
vii. Compute the derivatives of the shape functions with respect to the global coordinates

x and y as deriv = jac1 ∗ der
viii. Use the function formbeeb.m to form the strain matrix beeb

ix. Compute the flexural curvature χb = beeb ∗ eld and the corresponding moments as
Moment = deeb ∗ χb

x. Use the function formbees.m to form the strain matrix bees
xi. Compute the shear curvature χs = bees ∗ eld and the corresponding shear forces as

Shear = dees ∗ χs

4. Store the moments and shear forces in the array Element_Forces(nel, 5)

Using the data stored in the array Element_Forces(nel, 5), the function Forces_at_nodes_plate.m
calculates the moments and shear forces at the nodes, and returns them as arrays for plotting using
the MATLAB� function patch.

11.6.3.2 Contour Plots

Figure 11.11 shows the contour plot of the vertical displacement. The program predicts a vertical
displacement of −0.35239 in. at node 282, which is the center of the plate, that is very close to the
exact solution of −0.35022 in. Figures 11.12 and 11.13 show the contour plots of the moments Mxx

and Mxy. It is very interesting to note in Figure 11.13 that the corner of the plate tends to rise. Indeed,
it is well known that the corners of a flat plate under transverse load have the tendency to rise when
upward displacements are not restricted as shown in Figure 11.14.
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FIGURE 11.11 Contour plot of the vertical displacement.
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FIGURE 11.12 Contour plot of the moment Mxx.
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FIGURE 11.13 Contour plot of the moment Mxy.

11.7 ANALYSIS WITH ABAQUS

11.7.1 PRELIMINARY

Abaqus does not have plate elements as such. Instead it uses shell elements. In Abaqus, a plate is
merely considered as a flat shell. A shell element can be considered as a sophisticated version of
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FIGURE 11.14 Lifting of corners of a plate.

a plate element that can carry in-plane forces. Abaqus offers two types of three-dimensional shell
elements: conventional shell elements and continuum shell elements. Detailed descriptions of these
elements can be found in the Abaqus manual and in Ref. [6].

In Abaqus, shell elements are named as in the following sections.

11.7.1.1 Three-Dimensional Shell Elements

S8R5W

• S, conventional stress/displacement shell; SC, continuum stress/displacement shell; STRI,
triangular stress/displacement thin shell; DS, heat transfer shell

• 8, number of nodes
• R, reduced integration (optional)
• 5, number of degrees of freedom per node (optional)
• W, warping considered in small-strain formulation

11.7.1.2 Axisymmetric Shell Elements

SAX2T

• S, stress/displacement shell; DS, heat transfer shell
• AX, axisymmetric; AXA, axisymmetric with nonlinear, asymmetric deformation
• 2, order of interpolation
• T, coupled temperature displacement

11.7.1.3 Thick versus Thin Conventional Shell

Before choosing a shell element in Abaqus, it is worthwhile to check whether it is suitable for thin
shells only, thick shells only, or both.

The following elements are suitable for both: S3, S3R, S3RS, S4, S4R, S4RSW, SAX1, SAX2,
SAX2T, SC6R, and SC8R. They include the transverse shear deformation, which becomes very
small as the shell thickness decreases.

The following elements S8R and S8RT are only for use in thick shell problems.
Elements STRI3, S4R5, STRI65, S8R, S9R5, SAXA1n, and SAXA2n should not be used for

thick shells where transverse shear deformation is important.

11.7.2 SIMPLY SUPPORTED PLATE

In this section, we will analyze the simply supported square plate shown in Figure 11.9. As before,
we will only analyze a quarter for reasons of symmetry in both geometry and loading. We will use
the S4R element, which is suitable for both thin and thick shells.

© 2013 by Taylor & Francis Group, LLC



402 Introduction to Finite Element Analysis Using MATLAB� and Abaqus

Start Abaqus CAE. Click on Create
Model Database. On the main menu,
click on File and set Set Work Direc-
tory to choose your working directory.
Click on Save As and name the file
SLAB_S4R.cae. On the left-hand-side
menu, click on Part to begin creating
the model. Name the part SLAB_S4R,
check 3D, check Deformable in the
type. Choose Shell as the shape, and
Extrusion for type. Enter an approx-
imate size of 20 in. and click on
Continue (Figure 11.15).

FIGURE 11.15 Creating the Slab_S4R Part.

In the sketcher menu, choose
the Create-Lines connected
icon to draw a straight line 18
in. long. In the prompt area
in the bottom-left corner of
the viewport window, click on
Sketch the section for the
shell extrusion. In the Edit
base extrusion dialog box,
enter 18 in. for depth and click
OK (Figure 11.16).

FIGURE 11.16 Sketching the Slab_S4R Part.

Define a material named steel with
an elastic modulus of 30000000
psi and a Poisson’s ratio of 0.3.
Next, click on Sections to create a
section named Slab_section_S4R.
In the Category check Shell, and
in the Type, check Homogeneous.
Click on Continue. In the Edit
Section dialog box, enter 0.25 in.
as the thickness. Check Simpson
for thickness integration rule. Click
on OK (Figure 11.17).

FIGURE 11.17 Creating a homogeneous shell section.
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Expand the menu under Parts
and SLAB_S4R and dou-
ble click on Section Assign-
ments. With the mouse
select the whole part. In
the Edit Section Assign-
ments dialog box, select
Slab_section_S4R, and click
on OK (Figure 11.18).

FIGURE 11.18 Editing section assignments.

In the model tree, double
click on Mesh under the
SLAB_S4R. In the main
menu, under Mesh, click on
Mesh Controls. In the dia-
log box, check Quad for
Element shape and Struc-
tured for Technique. Click
on OK. Under Mesh, click
on Element Type. In the dia-
log box, select Standard for
element library, Linear for
geometric order. In Quad,
check Reduced integration.
The description of the ele-
ment S4R: A 4-node doubly
curved thin or thick shell,
reduced integration, hour
glass control, finite mem-
brane strains can be seen in
the dialog box. Click on OK
(Figure 11.19).

FIGURE 11.19 Mesh Controls and element type.
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In the main menu, under Seed,
click on Part. In the dialog
box, enter 2 in. for Approx-
imate global size. Click on
OK and on Done. In the main
menu, under Mesh, click on
Part. In the prompt area, click
on Yes (Figure 11.20).

FIGURE 11.20 Mesh.

Under Part, in the left-hand-
side menu, click on Sets.
In the dialog box, name the
set Loaded_node, and check
Node for Type. Click on Con-
tinue. In the viewport, locate
the central node as shown in
Figure 11.21. Click on Done.

FIGURE 11.21 Creating a node set.

In the model tree, expand the
Assembly and double click on
Instances. Select SLAB_S4R for
Parts and click OK. In the model
tree, expand Steps and Initial
and double click on BC. Name
the boundary condition Edge_X0,
select Displacement/Rotation for
the type, and click on Continue.
With the mouse select edge hav-
ing X = −9 in. as shown in
Figure 11.22 and click on Done
in the prompt area. In the Edit
Boundary Condition, check U2,
UR1, UR2: no displacement is
allowed along Y, and no rota-
tions are allowed around X and Y.
Click OK.

FIGURE 11.22 Imposing BC Edge_X0 using geometry.
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Repeat the procedure and
this time name the bound-
ary condition Edge_Z18,
select Displacement/
Rotation for the type,
and click on Continue. With
the mouse select edge having
Z = 18 in. as shown in
Figure 11.23 and click on
Done in the prompt area. In
the Edit Boundary Condi-
tion, check U2, UR2, UR3:
no displacement is allowed
along Y, and no rotations
are allowed around Y and Z.
Click OK.

FIGURE 11.23 Imposing BC Edge_Z18 using geometry.

Repeat the procedure and
this time name the bound-
ary condition Edge_Z0, select
Displacement/Rotation for
the type, and click on
Continue. With the mouse
select edge having Z = 0 in.
as shown in Figure 11.24 and
click on Done in the prompt
area. In the Edit Boundary
Condition, check U3, UR1,
UR2: because of symmetry no
displacement is allowed along
Z, and no rotations are allowed
around X and Y. Click OK.

FIGURE 11.24 Imposing BC Edge_Z0 using geometry.

Repeat the procedure and this
time name the boundary con-
dition Edge_X9, select Dis-
placement/Rotation for the
type, and click on Continue.
With the mouse select edge
having X = 9 in. as shown
in Figure 11.25 and click on
Done in the prompt area. In
the Edit Boundary Condi-
tion, check U1, UR2, UR3:
because of symmetry no dis-
placement is allowed along X,
and no rotations are allowed
around Y and Z. Click OK.

FIGURE 11.25 Imposing BC Edge_X9 using geometry.
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In the model tree, double
click on Steps. Name the
step Apply_loads. Set the
procedure to General and
select Static, General. Click
on Continue. Give the step a
description and click OK. In
the model tree, under steps,
and under Apply_loads,
click on Loads. Name the
load Point_Load and select
Concentrated Force as the
type. Click on Continue.
In the bottom-right corner
of the viewport, click on
Sets and select SLAB_S4R-
1.Loaded_node. In the Edit
load dialog box, enter −250,
a quarter of the load, for CF2.
Click OK (Figure 11.26).

FIGURE 11.26 Imposing a concentrated force using a node set.

In the model tree, expand the Field Output Requests and then double click on F-Output-1.
F-Output-1 is the default and is automatically generated when creating the step. Uncheck the
variables Contact and select any other variable you wish to add to the field output. Click on OK.
Under Analysis, right click on Jobs and then click on Create.

In the Create Job dialog box, name the job SLAB_S4R and click on Continue. In the Edit Job
dialog box, enter a description for the job. Check Full analysis, select to run the job in Background,
and check to start it immediately. Click OK. Expand the tree under Jobs, right click on SLAB_S4R.
Then, click on Submit. If you get the following message SLAB_S4R completed successfully in
the bottom window, then your job is free of errors and was executed properly. Under the top menu,
in the Module scroll to Visualization, and click to load Abaqus Viewer. On the main menu, under
File, click Open, navigate to your working directory, and open the file SLAB_S4R.odb. It should
have the same name as the job you submitted. Click on the Common options icon to display the
Common Plot options dialog box. Under labels, check Show Element labels and Show Node
labels to display elements and nodes’ numbering. Click on the icon Plot Contours on both shapes
to display the deformed shape of the beam. Under the main menu, select U and U2 to plot the vertical
displacement. It can be seen that the displacement of center of the plate is equal to −0.351 in., which
is very close to the analytical solution (Figure 11.27).

11.7.3 THREE-DIMENSIONAL SHELLS

In this section, we will show some more features of modeling with Abaqus. We will analyze a
castellated beam as an assembly of three-dimensional shell elements. Castellated beams such as the
one shown in Figure 11.28 are widely used in the steel construction industry. They are fabricated
from standard universal beam sections. The beam is initially split along its length in a zigzag cut.
The two halves of the beam are then separated, displaced by one profile to join the peaks, and welded
together to increase the depth of the beam.

From a universal beam section such as the one shown in Figure 11.29, we will make a
castellated beam whose cross section is shown in Figure 11.30. Notice that we will only model
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FIGURE 11.27 Plotting displacements on deformed shape.
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h w
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FIGURE 11.28 Castellated beam.
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7.8

406

12.8

FIGURE 11.29 Base profile.

the middle plane as the behavior of a conventional shell element is described by that of its
middle plane.

Figure 11.31 shows the castellated beam over a length of 12 m. There are 19 hexagons through the
length spaced at 203 mm. The beam will be fixed at both ends and subject to uniformly distributed
load of 178 kN/m, as shown in Figure 11.32.
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FIGURE 11.30 Castellated beam profile.
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FIGURE 11.31 Geometrical details of the castellated beam.
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12 m

FIGURE 11.32 Loading and boundary conditions.
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Start Abaqus CAE. Click on
Create Model Database. On
the main menu, click on File
and set Set Work Directory to
choose your working directory.
Click on Save As and name the
file Castellated_beam.cae. On
the left-hand-side menu, click
on Part to begin creating the
model. Name the part Castel-
lated_beam, check 3D, check
Deformable in the type. Choose
Shell as the shape and Extrusion
for type. Enter an approximate
size of 1000 mm and click on
Continue. In the sketcher menu,
choose the Create Lines: con-
nected icon to begin drawing the
profile of the beam. Draw an I
profile as shown in Figure 11.33
without paying too much atten-
tion to the dimensions.

FIGURE 11.33 Sketching the I profile.

Click on the Add Dimension
icon. With the mouse click on
the first vertice of the flange
and on the second vertice rep-
resenting the middle of the
flange as shown. In the com-
mand line of the viewport,
enter 89 mm as shown. Click
on Return (Figure 11.34).

FIGURE 11.34 Adding dimensions.
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Repeat the operation for the
parts of the flanges and enter
596.2 mm for the web. Click
on Return. The result should
look like the one shown in
Figure 11.35.

FIGURE 11.35 Finishing dimensioning the profile.

When finished, the Add
dimension too, and click on
Done in the prompt area to
sketch the section for the shell
extrusion. In the Edit base
extrusion, enter 12000 mm as
shown in Figure 11.36, and
click OK.

FIGURE 11.36 Editing shell extrusion.

Under the main menu, click on
Shape, Cut and Extrude. Select
the web as the plane for the
extruded cut. Next select the right-
hand end of the beam as the edge
or the axis that will appear vertical
on the right (Figure 11.37).

FIGURE 11.37 Selecting a plane for an extruded cut.
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The sketcher is loaded again.
This time we will use it
to sketch the hexagon. Use
the Magnify View tool to
increase the size of the sketch
(Figure 11.38).

FIGURE 11.38 Magnify view tool.

Draw a circle, and using the
Add dimension tool, enter its
radius as 203 mm. Then draw
two other circles as shown
in Figure 11.39, each having
a radius of 203 mm. Then
using the Create Lines: con-
nected tool, join the intersect-
ing points as shown to create
a perfect hexagon.

FIGURE 11.39 Sketching a hexagon.
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Select the Delete tool.
By keeping the Shift key
down, select all the cir-
cles. When finished click
in the prompt area on
Done. All that is left is a
hexagon (Figure 11.40).

FIGURE 11.40 Delete tool.

Next, we need to position
the hexagon at exactly
316 mm from the edge.
Using the Add dimen-
sion tool, enter 316 as
the distance from the
left vertex to the edge
(Figure 11.41).

FIGURE 11.41 Dimension tool.
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Next, we need to copy the
hexagon along the length of
the beam. Click on the Lin-
ear Pattern tool and select
the hexagon. Click on Done
(Figure 11.42).

FIGURE 11.42 Linear pattern tool.

In the Edit Linear Pattern
dialog box, enter 19 for direc-
tion 1, and 1 for direction 2.
Enter the distance from ver-
tice to vertice as 609 mm.
Click on OK (Figure 11.43).

FIGURE 11.43 Editing a linear pattern.
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Then in the prompt area of the
viewport, click on Sketch the
section for the extruded cut.
In the Edit Cut Extrusion
dialog box, select Through
all for the type and click
OK. The result should be an
image of a castellated beam
(Figure 11.44).

FIGURE 11.44 Edit cut extrusion.

Define a material named Steel
with an elastic modulus of
200000 MPa and a Pois-
son’s ratio of 0.27. Next,
click on Sections to create
two sections: one for the
web and the other for the
flanges. Name the first one
Web_section. In the Cate-
gory check Shell, and in the
Type, check Homogeneous.
Click on Continue. In the
Edit Section dialog box, enter
the web thickness as 7.8 mm
and the material as steel. Click
on OK. Create another section
named Flange_section. Enter
the shell thickness as 12.8
mm as shown in Figure 11.45.
Click on OK.

FIGURE 11.45 Creating a shell section.
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Expand the menu under
Parts and Castellated_beam
and double click on Section
Assignments. With the
mouse select the web. In
the Edit Section Assign-
ments dialog box, select
Web_section and click on
OK. Double click on Section
Assignments again, select
the flanges. In the Edit
Section Assignments dialog
box, select Flange_section
and click on OK. In the
prompt area, click on Done
(Figure 11.46).

FIGURE 11.46 Editing section assignments.

In the model tree, double click
on Mesh under the Castel-
lated_beam. In the main
menu, under Mesh, click on
Mesh Controls, select all the
regions, and click on Done. In
the dialog box, check Quad
for Element shape and Struc-
tured for Technique. A pop-
up will appear stating that
the web is too complex to
be meshed with a structured
technique. As a result, select
the flanges only for a struc-
tured mesh and the web on
its own for a free mesh
(Figure 11.47).

FIGURE 11.47 Mesh controls and element type.
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Under Mesh, click on Ele-
ment Type. In the dialog box,
select Standard for element
library, Linear for geomet-
ric order. In Quad, check
Reduced integration. The
description of the element
S4R can be seen. Click on OK
(Figure 11.48).

FIGURE 11.48 Element type.

In the main menu, under Seed,
click on Part. In the dialog
box, enter 40 for Approxi-
mate global size. Click on
OK and on Done. In the main
menu, under Mesh, click on
Part. In the prompt area, click
on Yes (Figure 11.49).

FIGURE 11.49 Mesh.
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In the model tree, expand
the Assembly and double
click on Instances. Select
Castellated_beam for Parts,
and click OK. In the model
tree, expand Steps and Initial
and double click on BC.
Name the boundary condition
FIXED, select Symme-
try/Antisymmetry/Encastre
for the type, and click on
Continue. In the viewport,
select the two ends of the
beam and click on Continue.
In the Edit Boundary Con-
dition, check Encastre. Click
OK (Figure 11.50).

FIGURE 11.50 Imposing BC using geometry.

In the model tree, double
click on Steps. Name the step
Apply_loads. Set the proce-
dure to General and select
Static, General. Click on
Continue. Click on OK. In
the model tree, under steps,
and under Apply_loads, click
on Loads. Name the load
Pressure and select Pres-
sure as the type. Click on
Continue. In the viewport,
select the two top surfaces.
If any of the surface appears
brown, select it and flip
the color to purple in the
prompt area. In the Edit Load
dialog box, enter 1 N/mm2

for magnitude. Click OK
(Figure 11.51).

FIGURE 11.51 Applying a pressure load on a shell surface.
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FIGURE 11.52 Contour of the vertical displacement.

Under Analysis, right click on Jobs and then click on Create.
In the Create Job dialog box, name the job Castellated_Beam and click on Continue. In the

Edit Job dialog box, enter a description for the job. Check Full analysis, select to run the job in
Background, and check to start it immediately. Click OK. Expand the tree under Jobs, right click
on Castellated_Beam. Then, click on Submit. If you get the following message Castellated_Beam
completed successfully in the bottom window, then your job is free of errors and was executed
properly.

Under the top menu, in the Module scroll to Visualization, and click to load Abaqus Viewer.
On the main menu, under File, click Open, navigate to your working directory, and open the file
Castellated_Beam. It should have the same name as the job you submitted. Click on the icon Plot
on Undeformed shape. Under the main menu, select U and U2 to plot the vertical displacement
(Figure 11.52).

Under the main menu, select S and Mises to plot the von Mises stress (Figure 11.53).

FIGURE 11.53 Contour plot of the von Mises stress.
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Appendix A: List of MATLAB�

Modules and Functions

A.1 Assem_Elem_loads.m
function[F] = Assem_Elem_loads(F , fg, g)
%
% This function assemble the global force vector
%
global eldof
%
% This function assembles the global force vector
%
for idof=1:eldof

if (g(idof))~= 0
F(g(idof))= F(g(idof))+ fg(idof);

end
end
%
% end function Assem_Elem_loads

A.2 Assem_Joint_Loads.m
function[F] = Assem_Joint_Loads(F)
%
% This function assembles the joints loads
% to the global force vector
%
global nnd nodof
global nf Joint_loads
%
for i=1:nnd

for j=1:nodof
if nf(i,j)~= 0

F(nf(i,j)) = Joint_loads(i,j);
end

end
end
end
%%%%%%%%% End function form_beam_F %%%%%%%%%%%%%%%%

A.3 beam_column_C.m
function[C] = beam_column_C(i)
%
% This function forms the transformation between
% local and global coordinates
%
global nnd nel nne nodof eldof
global geom connec prop nf load
%
% retrieve the nodes of element i
%
node1=connec(i,1);
node2=connec(i,2);
%
%
% Retrieve the x and y coordinates of nodes 1 and 2

419
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%
x1=geom(node1,1); y1=geom(node1,2);
x2=geom(node2,1); y2=geom(node2,2);
%
% Evaluate the angle that the member makes with the global axis X
%
if(x2-x1)==0

if(y2>y1)
theta=2*atan(1);
else
theta=-2*atan(1);
end

else
theta=atan((y2-y1)/(x2-x1));

end
%
% Construct the transformation matrix
%
C = [cos(theta) -sin(theta) 0 0 0 0 ; ...

sin(theta) cos(theta) 0 0 0 0 ; ...
0 0 1 0 0 0 ; ...
0 0 0 cos(theta) -sin(theta) 0 ; ...
0 0 0 sin(theta) cos(theta) 0 ; ...
0 0 0 0 0 1 ];

%
% end function beam_column_C

A.4 beam_column_g.m
function[g] = beam_column_g(i)
%
% This function forms the steering vector for element i
%
global nnd nel nne nodof eldof
global geom connec prop nf load
%
% retrieve the nodes of element i
%
node1=connec(i,1);
node2=connec(i,2);
%
% Retrieve the element degrees of freedom to be stored
% in the steering vector
%
g=[nf(node1,1); ...

nf(node1,2); ...
nf(node1,3); ...
nf(node2,1); ...
nf(node2,2); ...
nf(node2,3)];

%
% end function beam_column_g

A.5 beam_column_k.m
function[kl] = beam_column_k(i)
%
% This function forms the beam-column element stiffness in local coordinates
%
global nnd nel nne nodof eldof
global geom connec prop nf load Hinge
%
% retrieve the nodes of element i
%
node1=connec(i,1);
node2=connec(i,2);
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%
%
% Retrieve the x and y coordinates of nodes 1 and 2
%
x1=geom(node1,1); y1=geom(node1,2);
x2=geom(node2,1); y2=geom(node2,2);
%
% Evaluate length of element i
%
L = sqrt((x2-x1)^2 + (y2-y1)^2);
%
% Retrieve section properties of element i
%
E = prop(i,1); A = prop(i,2); I = prop(i,3);
%
EA=E*A; EI=E*I;
%
%Calculate element stiffness matrix in its local coordinates
%
if Hinge(i,1) == 0
kl=[EA/L 0 0 -EA/L 0 0 ; ...

0 3*EI/L^3 0 0 -3*EI/L^3 3*EI/L^2 ; ...
0 0 0 0 0 0 ; ...

-EA/L 0 0 EA/L 0 0 ; ...
0 -3*EI/L^3 0 0 3*EI/L^3 -3*EI/L^2 ; ...
0 3*EI/L^2 0 0 -3*EI/L^2 3*EI/L ];

elseif Hinge(i,2) == 0
kl=[EA/L 0 0 -EA/L 0 0 ; ...

0 3*EI/L^3 3*EI/L^2 0 -3*EI/L^3 0 ; ...
0 3*EI/L^2 3*EI/L 0 -3*EI/L^2 0 ; ...

-EA/L 0 0 EA/L 0 0 ; ...
0 -3*EI/L^3 -3*EI/L^2 0 3*EI/L^3 0 ; ...
0 0 0 0 0 0];

else
kl=[EA/L 0 0 -EA/L 0 0 ; ...

0 12*EI/L^3 6*EI/L^2 0 -12*EI/L^3 6*EI/L^2 ; ...
0 6*EI/L^2 4*EI/L 0 -6*EI/L^2 2*EI/L ; ...

-EA/L 0 0 EA/L 0 0 ; ...
0 -12*EI/L^3 -6*EI/L^2 0 12*EI/L^3 -6*EI/L^2 ; ...
0 6*EI/L^2 2*EI/L 0 -6*EI/L^2 4*EI/L ];

end
%
% End function beam_column_k

A.6 beam_g.m
function[g] = beam_g(i)
%
% This function forms the steering vector for element i
%
global connec nf
%
% retrieve the nodes of element i
%
node_1=connec(i,1);
node_2=connec(i,2);
%
% Form the steering vector from element’s degrees
% of freedom
%
g=[nf(node_1,1); nf(node_1,2); nf(node_2,1);nf(node_2,2)];
%
%%%%%%%%%%%%%%%%%% end function beam_g %%%%%%%%%%%%%%%%
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A.7 beam_k.m
function[kl] = beam_k(i)
%
% This function forms the element stiffness in local coordinates
%
global nnd nel nne nodof eldof
global geom connec prop nf load Hinge
%
% retrieve the nodes of element i
%
node1=connec(i,1);
node2=connec(i,2);
%
%
% Retrieve the x and y coordinates of nodes 1 and 2
%
x1=geom(node1); x2=geom(node2);
%
% Evaluate length of element i
%
L = abs(x2-x1);
%
% Retrieve section properties of element i
%
EI = prop(i,1)*prop(i,2);
%
%Calculate element stiffness matrix in its local coordinates
%
if Hinge(i, 1) == 0
kl=[ 3*EI/L^3 0 -3*EI/L^3 3*EI/L^2 ; ...

0 0 0 0 ; ...
-3*EI/L^3 0 3*EI/L^3 -3*EI/L^2 ; ...
3*EI/L^2 0 -3*EI/L^2 3*EI/L ];

elseif Hinge(i, 2) == 0
kl=[ 3*EI/L^3 3*EI/L^2 -3*EI/L^3 0 ; ...

3*EI/L^2 3*EI/L -3*EI/L^2 0 ; ...
-3*EI/L^3 -3*EI/L^2 3*EI/L^3 0 ; ...

0 0 0 0 ] ;
else
kl=[ 12*EI/L^3 6*EI/L^2 -12*EI/L^3 6*EI/L^2 ; ...

6*EI/L^2 4*EI/L -6*EI/L^2 2*EI/L ; ...
-12*EI/L^3 -6*EI/L^2 12*EI/L^3 -6*EI/L^2 ; ...
6*EI/L^2 2*EI/L -6*EI/L^2 4*EI/L ];

end
%
% End function beam_k

A.8 coord_q8.m
function[coord] = coord_q8(k,nne, geom, connec )
%
% This function returns the coordinates of the nodes of element k
%
coord=zeros(nne,2);
for i=1: nne

coord(i,:)=geom(connec(k,i),:);
end
%
% End function coord_q8
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A.9 elem_q4.m
function[coord,g] = elem_q4(i)
%
% This function returns the coordinates of the nodes of
% element i and its steering vector g
%
global nnd nel nne nodof eldof n ngp
global geom connec dee nf load
%
l=0;
coord=zeros(nne,nodof);
for k=1: nne

for j=1:nodof
coord(k,j)=geom(connec(i,k),j);
l=l+1;
g(l)=nf(connec(i,k),j);
end

end
%
% End function elem_q4

A.10 Elem_q8.m
function[coord,g] = elem_q8(i)
%
% This function returns the coordinates of the nodes of element i
% and its steering vector
%
global nnd nel nne nodof eldof n ngp
global geom connec dee nf load
%
l=0;
coord=zeros(nne,nodof);
for k=1: nne

for j=1:nodof
coord(k,j)=geom(connec(i,k),j);
l=l+1;
g(l)=nf(connec(i,k),j);
end

end
%
% End function elem_q8

A.11 elem_T3.m
function[bee,g,A] = elem_T3(i)
%
% This function returns the coordinates of the nodes of element i
% and its steering vector
%
global nnd nel nne nodof eldof n
global geom connec dee nf load
%
x1 = geom(connec(i,1),1); y1 = geom(connec(i,1),2);
x2 = geom(connec(i,2),1); y2 = geom(connec(i,2),2);
x3 = geom(connec(i,3),1); y3 = geom(connec(i,3),2);
%
A = (0.5)*det([1 x1 y1; ...

1 x2 y2; ...
1 x3 y3]);

%
m11 = (x2*y3 - x3*y2)/(2*A);
m21 = (x3*y1 - x1*y3)/(2*A);
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m31 = (x1*y2 - y1*x2)/(2*A);
m12 = (y2 - y3)/(2*A);
m22 = (y3 - y1)/(2*A);
m32 = (y1 - y2)/(2*A);
m13 = (x3 - x2)/(2*A);
m23 = (x1 - x3)/(2*A);
m33 = (x2 -x1)/(2*A);

%
bee = [ m12 0 m22 0 m32 0; ...

0 m13 0 m23 0 m33; ...
m13 m12 m23 m22 m33 m32] ;

%
l=0;
for k=1:nne

for j=1:nodof
l=l+1;
g(l)=nf(connec(i,k),j);
end

end
%
% End function elem_T3

A.12 elem_T6.m
function[coord,g] = elem_T6(i)
%
% This function returns the coordinates of the nodes of element i
% and its steering vector
%
global nnd nel nne nodof eldof n
global geom connec dee nf load
%
l=0;
coord=zeros(nne,nodof);
for k=1: nne

for j=1:nodof
coord(k,j)=geom(connec(i,k),j);
l=l+1;
g(l)=nf(connec(i,k),j);
end

end
%
% End function elem_T6

A.13 fmlin.m
function[der,fun] = fmlin(samp, ig,jg)
%
% This function returns the vector of the shape function and their
% derivatives with respect to xi and eta
%
xi=samp(ig,1);
eta=samp(jg,1);
%
fun = 0.25*[(1.- xi - eta + xi*eta);...

(1.+ xi - eta - xi*eta);...
(1.+ xi + eta + xi*eta);...
(1.- xi + eta - xi*eta)];

%
der = 0.25*[-(1-eta) (1-eta) (1+eta) -(1+eta);...

-(1-xi) -(1+xi) (1+xi) (1-xi)];
% end function fmlin
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A.14 fmquad.m
function[der,fun] = fmquad(samp, ig,jg)
%
% This function returns the vector of the shape function and their
% derivatives with respect to xi and eta at the gauss points for
% an 8-nodded quadrilateral
%
xi=samp(ig,1);
eta=samp(jg,1);
etam=(1.-eta);
etap=(1.+eta);
xim=(1.-xi);
xip=(1.+xi);
%
fun(1) = -0.25*xim*etam*(1.+ xi + eta);
fun(2) = 0.5*(1.- xi^2)*etam;
fun(3) = -0.25*xip*etam*(1. - xi + eta);
fun(4) = 0.5*xip*(1. - eta^2);
fun(5) = -0.25*xip*etap*(1. - xi - eta);
fun(6) = 0.5*(1. - xi^2)*etap;
fun(7) = -0.25*xim*etap*(1. + xi - eta);
fun(8) = 0.5*xim*(1. - eta^2);
%
der(1,1)=0.25*etam*(2.*xi + eta); der(1,2)=-1.*etam*xi;
der(1,3)=0.25*etam*(2.*xi-eta); der(1,4)=0.5*(1-eta^2);
der(1,5)=0.25*etap*(2.*xi+eta); der(1,6)=-1.*etap*xi;
der(1,7)=0.25*etap*(2.*xi-eta); der(1,8)=-0.5*(1.-eta^2);
%
der(2,1)=0.25*xim*(2.*eta+xi); der(2,2)=-0.5*(1. - xi^2);
der(2,3)=-0.25*xip*(xi-2.*eta); der(2,4)=-1.*xip*eta;
der(2,5)=0.25*xip*(xi+2.*eta); der(2,6)=0.5*(1.-xi^2);
der(2,7)=-0.25*xim*(xi-2.*eta); der(2,8)=-1.*xim*eta;
%
% end function fmquad

A.15 fmT6_quad.m
function[der,fun] = fmT6_quad(samp, ig)
%
% This function returns the vector of the shape function and their
% derivatives with respect to xi and eta at the gauss points for
% an 8-nodded quadrilateral
%
xi=samp(ig,1);
eta=samp(ig,2);
lambda = 1. - xi - eta;
%
fun(1) = -lambda*(1.-2*lambda);
fun(2) = 4.*xi*lambda;
fun(3) = -xi*(1.-2*xi);
fun(4) = 4.*xi*eta;
fun(5) = -eta*(1.-2*eta);
fun(6) = 4.*eta*lambda;
%
der(1,1)=1.-4*lambda; der(1,2)=4.*(lambda-xi);
der(1,3)=-1.+4*xi; der(1,4)=4.*eta;
der(1,5)=0.; der(1,6)=-4.*eta;
%
der(2,1)=1.-4*lambda; der(2,2)=-4.*xi;
der(2,3)=0.; der(2,4)=4.*xi;
der(2,5)=-1.+4.*eta; der(2,6)=4.*(lambda-eta);
%
% end function fmT6_quad
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A.16 Forces_at_nodes_plate.m
function[MX, MY, MXY, QX, QY]=Forces_at_nodes_plate(Element_Forces)
%
% This function averages the stresses at the nodes
%
global nnd nel nne connec
%
for k = 1:nnd

mx = 0. ; my = 0.; mxy = 0.; qx = 0.; qy = 0.;
ne = 0;
for iel = 1:nel;

for jel=1:nne;
if connec(iel,jel) == k;

ne=ne+1;
mx = mx + Element_Forces(iel,1);
my = my + Element_Forces(iel,2);
mxy = mxy + Element_Forces(iel,3);
qx = qx + Element_Forces(iel,4);
qy = qy + Element_Forces(iel,5);

end
end

end
MX(k,1) = mx/ne;
MY(k,1) = my/ne;
MXY(k,1) = mxy/ne;
QX(k,1) = qx/ne;
QY(k,1) = qy/ne;

end

A.17 File:form_beam_F.m
function[F] = form_beam_F(F)
%
% This function forms the global force vector
%
global nnd nodof nel eldof
global nf Element_loads Joint_loads
%
for i=1:nnd

for j=1:nodof
if nf(i,j)~= 0

F(nf(i,j)) = Joint_loads(i,j);
end

end
end
%
%
for i=1:nel

g=beam_g(i) ; % Retrieve the element steering vector
for j=1:eldof

if g(j)~= 0
F(g(j))= F(g(j)) + Element_loads(i,j);
end

end
end
%%%%%%%%% End function form_beam_F %%%%%%%%%%%%%%%%

A.18 File:form_ff.m
function[ff]=form_ff(ff,fg, g)
%
% This function assemble the global force vector
%
global nodof nne eldof
%
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% This function assembles the global force vector
%
for idof=1:eldof

if (g(idof))~= 0
ff(g(idof))= ff(g(idof))+ fg(idof);

end
end
%
% end function form_ff

A.19 File:form_KK.m
function[KK]=form_KK(KK, kg, g)
%
% This function assembles the global stiffness matrix
%
global eldof
%
% This function assembles the global stiffness matrix
%
for i=1:eldof

if g(i) ~= 0
for j=1: eldof

if g(j) ~= 0
KK(g(i),g(j))= KK(g(i),g(j)) + kg(i,j);
end

end
end

end
%
%%%%%%%%%%%%% end function form_KK %%%%%%%%%%%%%%%%%

A.20 form_truss_F.m
function[F] = form_truss_F(F)
%
% This function forms the global force vector
%
global nnd nodof
global nf load
%
for i=1:nnd

for j=1:nodof
if nf(i,j)~= 0

F(nf(i,j)) = load(i,j);
end

end
end
%%%%%%%%% End function form_truss_F %%%%%%%%%%%%%%%%

A.21 formbee.m
function[bee] = formbee(deriv,nne,eldof)
%
% This function assembles the matrix [bee] from the
% derivatives of the shape functions in global coordinates
%
bee=zeros(3,eldof);
for m=1:nne

k=2*m;
l=k-1;
x=deriv(1,m);
bee(1,l)=x;
bee(3,k)=x;
y=deriv(2,m);
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bee(2,k)=y;
bee(3,l)=y;

end
%
% End function formbee

A.22 formbee_axi.m
function[bee, radius] = formbee_axi(deriv,nne,fun, coord,eldof)
%
% This function assembles the matrix [bee] for an axisymmetric
% problem from the derivatives of the shape functions in global
% coordinates
%
bee=zeros(4,eldof);
%
radius = dot(fun,coord(:,1));
%
for m=1:nne

k=2*m;
l=k-1;
x=deriv(1,m);
bee(1,l)=x;
bee(4,k)=x;
y=deriv(2,m);
bee(2,k)=y;
bee(4,l)=y;
bee(3,l) = fun(m)/radius;

end
%
% End function formbee_axi

A.23 formbeeb.m
function[beeb] = formbeeb(deriv,nne,eldof)
%
% This function assembles the matrix [beeb] from the
% derivatives of the shape functions in global coordinates
% for a thick plate element (bending action)
%
beeb=zeros(3,eldof);
for m=1:nne

k=3*m;
j=k-1;
x=deriv(1,m);
beeb(1,j)=x;
beeb(3,k)=x;
y=deriv(2,m);
beeb(2,k)=y;
beeb(3,j)=y;

end
%
% End function formbeeb

A.24 formbees.m
function[bees] = formbees(deriv,fun, nne,eldof)
%
% This function assembles the matrix [bees] from the
% derivatives of the shape functions in global coordinates
% for the shear action in a plate element
%
bees=zeros(2,eldof);
for m=1:nne

k=3*m;
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j=k-1;
i=k-2;
x=deriv(1,m); y=deriv(2,m);
bees(2,i)=-x;
bees(1,i)=-y;
bees(1,k) = fun(m);
bees(2,j) = fun(m);

end
%
% End function formbees

A.25 formdax.m
function[dee] = formdax(E,vu)
%
% This function forms the elasticity matrix for a plane stress problem
%
v1 = 1. - vu;
c = E/((1. + vu)*(1. - 2.*vu));
%
dee = c*[v1 vu vu 0;...

vu v1 vu 0;...
vu vu v1 0;...
0. 0. 0. .5*(1.-vu)];

%
% end function fromdeps

A.26 formdeeb.m
function[deeb] = formdeeb(E,vu,thick)
%
% This function forms the elasticity matrix for a bending
% action in a plate element
%
DR= E*(thick^3)/(12*(1.-vu*vu));
%
deeb=DR*[1 vu 0. ;...

vu 1 0. ;...
0. 0. (1.-vu)/2] ;

%
% end function fromdeeb

A.27 formdees.m
function[dees] = formdees(E,vu,thick)
%
% This function forms the elasticity matrix for the shear
% action in a thick plate element
%
G= E/(2*(1.+vu));
%
dees=G*[thick 0 ;...

0 thick];
%
% end function fromdees

A.28 formdeps.m
function[dee] = formdeps(E,vu)
%
% This function forms the elasticity matrix for a plane strain problem
%
v1=1.-vu
c=E/((1.+vu)*(1.-2.*vu))
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%
dee=[v1*c vu*c 0. ;...

vu*c v1*c 0. ;...
0. 0. .5*c*(1.-2.*vu)];

%
% end function fromdeps

A.29 formdsig.m
function[dee] = formdsig(E,vu)
%
% This function forms the elasticity matrix for a plane stress problem
%
c=E/(1.-vu*vu);
%
dee=c*[1 vu 0. ;...

vu 1 0. ;...
0. 0. .5*(1.-vu)];

%
% end function formdsig

A.30 gauss.m
function[samp]=gauss(ngp)
%
% This function returns the abscissas and weights of the Gauss
% points for ngp equal up to 4
%
%
samp=zeros(ngp,2);
%
if ngp==1

samp=[0. 2];
elseif ngp==2

samp=[-1./sqrt(3) 1.;...
1./sqrt(3) 1.];

elseif ngp==3
samp= [-.2*sqrt(15.) 5./9; ...

0. 8./9.;...
.2*sqrt(15.) 5./9];

elseif ngp==4
samp= [-0.861136311594053 0.347854845137454; ...

-0.339981043584856 0.652145154862546; ...
0.339981043584856 0.652145154862546; ...
0.861136311594053 0.347854845137454];

end
%
% End function Gauss

A.31 hammer.m
function[samp]=hammer(npt)
%
% This function returns the abscissae and weights of the
% integration points for npt equal up to 7
%
%
samp=zeros(npt,3);
%
if npt==1

samp=[1/3. 1/3. 1/2.];
elseif (npt==2 | npt==3)

npt=3;
samp=[1/6. 1/6. 1/6.; ...

2/3 1./6 1/6.; ...
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1/6. 2./3. 1/6];
elseif (npt==4 | npt==5)

npt=4;
samp= [1/3 1/3 -27/96; ...

1/5 1/5. 25/96;...
3/5 1/5. 25/96;...
1/5 3/5 25/96];

elseif npt==6
a = 0.445948490915965; b = 0.091576213509771;
samp= [ a a 0.111690794839005; ...

1-2*a a 0.111690794839005; ...
a 1-2*a 0.111690794839005; ...
b b 0.054975871827661; ...

1-2*b b 0.054975871827661; ...
b 1-2*b 0.054975871827661];

elseif npt==7
a = (6+sqrt(15))/21 ; b = 4/7 -a;
A = (155+sqrt(15))/2400; B = (31/240 -A);

samp= [ 1/3 1/3 9/80; ...
a a A ; ...
1-2*a a A ; ...
a 1-2*a A ; ...
b b B ; ...

1-2*b b B ; ...
b 1-2*b B];

end
%
% End function hammer

A.32 platelem_q8.m
function[coord,g] = platelem_q8(i)
%
% This function returns the coordinates of the nodes of element i
% and its steering vector
%
global nne nodof geom connec nf dim
%
coord=zeros(nne,dim);
for k=1: nne

for j=1:dim
coord(k,j)=geom(connec(i,k),j);
end

end
%
l=0;
for k=1: nne

for j=1:nodof
l=l+1;
g(l)=nf(connec(i,k),j);
end

end
%
% End function platelem_q8

A.33 prepare_contour_data.m
function[ZX, ZY, ZT, Z1, Z2]=prepare_contour_data(SIGMA)
%
% This function averages the stresses at the nodes
% and rearrange the values in the matrices Z for contouring
%
global nnd nel nne geom connec XIG YIG NXE NYE
%
for k = 1:nnd

sigx = 0. ;sigy = 0.; tau = 0.;
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ne = 0;
for iel = 1:nel;

for jel=1:nne;
if connec(iel,jel) == k;

ne=ne+1;
sigx = sigx+SIGMA(iel,1);
sigy = sigy + SIGMA(iel,2);
tau = tau + SIGMA(iel,3);

end
end

end
xc = geom(k,1); yc = geom(k,2);
for i = 1:2*NXE+1;
for j=1:2*NYE +1;
if xc == XIG(i) && yc == YIG(j);
ZX(j,i) = sigx/ne;
ZY(j,i) = sigy/ne;
ZT(j,i)=tau/ne;
Z1(j,i)= ((sigx+sigy)/2 + sqrt(((sigx+sigy)/2)^2 +tau^2))/ne;
Z2(j,i)= ((sigx+sigy)/2 - sqrt(((sigx+sigy)/2)^2 +tau^2))/ne;
end

end
end

end

A.34 print_beam_model.m
%
fprintf(fid, ’ ******* PRINTING MODEL DATA **************\n\n\n’);
%
% Print Nodal coordinates
%
fprintf(fid, ’------------------------------------------------------ \n’);
fprintf(fid, ’Number of nodes: %g\n’, nnd );
fprintf(fid, ’Number of elements: %g\n’, nel );
fprintf(fid, ’Number of nodes per element: %g\n’, nne );
fprintf(fid, ’Number of degrees of freedom per node: %g\n’, nodof);
fprintf(fid, ’Number of degrees of freedom per element: %g\n\n\n’, eldof);
%
%
%
fprintf(fid, ’------------------------------------------------------ \n’);
fprintf(fid, ’Node X\n’);
for i=1:nnd
fprintf(fid,’ %g, %07.2f\n’,i, geom(i));
end
fprintf(fid,’\n’);
%
% Print element connectivity
%
fprintf(fid, ’------------------------------------------------------ \n’);
fprintf(fid, ’Element Node_1 Node_2 \n’);
for i=1:nel
fprintf(fid,’ %g, %g, %g\n’,i, connec(i,1), connec(i,2));
end
fprintf(fid,’\n’);
%
% Print element property
%
fprintf(fid, ’------------------------------------------------------ \n’);
fprintf(fid, ’Element E I \n’);
for i=1:nel
fprintf(fid,’ %g, %g, %g\n’,i, prop(i,1), prop(i,2));
end
fprintf(fid,’\n’);
%
% Print Nodal freedom
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%
fprintf(fid, ’------------------------------------------------------ \n’);
fprintf(fid, ’-------------Nodal freedom---------------------------- \n’);
fprintf(fid, ’Node disp_w Rotation \n’);
for i=1:nnd
fprintf(fid,’ %g, %g, %g\n’,i, nf(i,1), nf(i,2));
end
fprintf(fid,’\n’);
%
% Print Nodal loads
%
fprintf(fid, ’------------------------------------------------------ \n’);
fprintf(fid, ’-----------------Applied Nodal Loads------------------- \n’);
fprintf(fid, ’Node load_Y Moment\n’);
for i=1:nnd

for j=1:nodof
node_force(i,j) = 0;
if nf(i,j)~= 0;
node_force(i,j) = F(nf(i,j))
end

end
fprintf(fid,’ %g, %07.2f, %07.2f\n’,i, node_force(i,1), node_force(i,2));
end
%
fprintf(fid, ’------------------------------------------------------ \n’);
fprintf(fid,’\n’);
fprintf(fid,’Total number of active degrees of freedom, n = %g\n’,n);
fprintf(fid,’\n’);
%

A.35 print_beam_results.m
%
fprintf(fid, ’-------------------------------------------------------- \n’);
fprintf(fid, ’ \n\n\n ******* PRINTING ANALYSIS RESULTS **************\n\n\n’);
%
% Print global force vector
%
fprintf(fid, ’------------------------------------------------------ \n’);
fprintf(fid,’Global force vector F \n’);
fprintf(fid,’ %g\n’,F);
fprintf(fid,’\n’);
%
%
% Print Displacement solution vector
%
fprintf(fid, ’------------------------------------------------------ \n’);
fprintf(fid,’Displacement solution vector: delta \n’);
fprintf(fid,’ %8.5f\n’,delta);
fprintf(fid,’\n’);
%
% Print nodal displacements
%
fprintf(fid, ’------------------------------------------------------ \n’);
fprintf(fid, ’Nodal displacements \n’);
fprintf(fid, ’Node disp_y rotation\n’);
for i=1:nnd
fprintf(fid,’ %g, %8.5f, %8.5f\n’,i, node_disp(i,1), node_disp(i,2));
end
fprintf(fid,’\n’);
%
% Print Members actions
%
fprintf(fid, ’------------------------------------------------------ \n’);
fprintf(fid, ’Members actions \n’);
fprintf(fid, ’element fy1 M1 Fy2 M2\n’);
for i=1:nel
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fprintf(fid,’ %g, %9.2f, %9.2f, %9.2f, %9.2f\n’,i, ...
force(i,1),force(i,2),force(i,3),force(i,4));

end

A.36 print_CST_results.m
%
fprintf(fid, ’-------------------------------------------------------- \n’);
fprintf(fid, ’ \n ******* PRINTING ANALYSIS RESULTS ************\n\n’);
%
% Print nodal displacements
%
fprintf(fid, ’------------------------------------------------------ \n’);
fprintf(fid, ’Nodal displacements \n’);
fprintf(fid, ’Node disp_x disp_y \n’);

for i=1:nnd
fprintf(fid,’ %g, %8.5e, %8.5e\n’, ...

i, node_disp(i,1), node_disp(i,2));
end
fprintf(fid,’\n’);
%
% Print element stresses
%
fprintf(fid, ’------------------------------------------------------ \n’);
fprintf(fid, ’ Element stresses \n’);
fprintf(fid, ’element sigma_(xx) sigma_(yy) tau_(xy)\n’);
%
for i=1:nel

fprintf(fid,’ %g, %7.4e, %7.4e, %7.4e\n’,i, ...
SIGMA(i,1),SIGMA(i,2),SIGMA(i,3));

end
%
%
% Print element strains
%
fprintf(fid, ’------------------------------------------------------ \n’);
fprintf(fid, ’ Element strains \n’);
fprintf(fid, ’element epsilon_(xx) epsilon_(yy) gamma_(xy)\n’);
%
for i=1:nel

fprintf(fid,’ %g, %7.4e, %7.4e, %7.4e\n’,i, ...
EPS(i,1),EPS(i,2),EPS(i,3));

end

A.37 print_frame_model.m
%
fprintf(fid, ’ ******* PRINTING MODEL DATA **************\n\n\n’);

% Print Nodal coordinates
%
fprintf(fid, ’------------------------------------------------------ \n’);
fprintf(fid, ’Number of nodes: %g\n’, nnd );
fprintf(fid, ’Number of elements: %g\n’, nel );
fprintf(fid, ’Number of nodes per element: %g\n’, nne );
fprintf(fid, ’Number of degrees of freedom per node: %g\n’, nodof);
fprintf(fid, ’Number of degrees of freedom per element: %g\n\n\n’, eldof);
%
%
%
fprintf(fid, ’------------------------------------------------------ \n’);
fprintf(fid, ’Node X Y\n’);
for i=1:nnd
fprintf(fid,’ %g, %07.2f %07.2f\n’,i, geom(i,1), geom(i,2));
end
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fprintf(fid,’\n’);
%
% Print element connectivity
%
fprintf(fid, ’------------------------------------------------------ \n’);
fprintf(fid, ’Element Node_1 Node_2 \n’);
for i=1:nel
fprintf(fid,’ %g, %g, %g\n’,i, connec(i,1), connec(i,2));
end
fprintf(fid,’\n’);
%
% Print element property
%
fprintf(fid, ’------------------------------------------------------ \n’);
fprintf(fid, ’Element E A I \n’);
for i=1:nel
fprintf(fid,’ %g, %g, %g %g\n’, ...

i, prop(i,1), prop(i,2), prop(i,3));
end
fprintf(fid,’\n’);
%
% Print Nodal freedom
%
fprintf(fid, ’------------------------------------------------------ \n’);
fprintf(fid, ’-------------Nodal freedom---------------------------- \n’);
fprintf(fid, ’Node disp_u disp_u Rotation \n’);
for i=1:nnd
fprintf(fid,’ %g, %g, %g, %g\n’, ...

i, nf(i,1), nf(i,2),nf(i,3) );
end
fprintf(fid,’\n’);
%
% Print joint loads
%
fprintf(fid, ’------------------------------------------------------ \n’);
fprintf(fid, ’-----------------Applied joint Loads------------------- \n’);
fprintf(fid, ’Node load_X load_Y Moment\n’);
for i=1:nnd

for j=1:nodof
node_force(i,j) = 0;
if nf(i,j)~= 0;
node_force(i,j) = F(nf(i,j));
end

end
fprintf(fid,’ %g, %07.2f, %07.2f, %07.2f\n’, ...

i, node_force(i,1), node_force(i,2), node_force(i,3));
end
%
fprintf(fid, ’------------------------------------------------------ \n’);
fprintf(fid,’\n’);
fprintf(fid,’Total number of active degrees of freedom, n = %g\n’,n);
fprintf(fid,’\n’);
%

A.38 print_frame_results.m
%
fprintf(fid, ’-------------------------------------------------------- \n’);
fprintf(fid, ’ \n\n\n ******* PRINTING ANALYSIS RESULTS ************\n\n\n’);
%
% Print global force vector
%
fprintf(fid, ’------------------------------------------------------ \n’);
fprintf(fid,’Global force vector F \n’);
fprintf(fid,’ %g\n’,F);
fprintf(fid,’\n’);
%
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%
% Print Displacement solution vector
%
fprintf(fid, ’------------------------------------------------------ \n’);
fprintf(fid,’Displacement solution vector: delta \n’);
fprintf(fid,’ %8.5f\n’,delta);
fprintf(fid,’\n’);
%
% Print nodal displacements
%
fprintf(fid, ’------------------------------------------------------ \n’);
fprintf(fid, ’Nodal displacements \n’);
fprintf(fid, ’Node disp_x disp_y rotation\n’);
for i=1:nnd
fprintf(fid,’ %g, %8.5e, %8.5e, %8.5e\n’,i, ...

node_disp(i,1), node_disp(i,2),node_disp(i,3));
end
fprintf(fid,’\n’);
%
% Print Members actions
%
fprintf(fid, ’------------------------------------------------------ \n’);
fprintf(fid, ’Members actions in local coordinates \n’);
fprintf(fid, ’element fx1 fy1 M1 fx2 Fy2 M2\n’);
for i=1:nel

fprintf(fid,’ %g, %7.4f, %7.4f, %7.4f, %7.4f, %7.4f, %9.4f\n’,i, ...
force_l(i,1),force_l(i,2),force_l(i,3),force_l(i,4),force_l(i,5),force_l(i,6));

end
%
fprintf(fid, ’------------------------------------------------------ \n’);
fprintf(fid, ’Members actions in global coordinates \n’);
fprintf(fid, ’element fx1 fy1 M1 fx2 Fy2 M2\n’);
for i=1:nel

fprintf(fid,’ %g, %7.4f, %7.4f, %7.4f, %7.4f, %7.4f, %9.4f\n’,i, ...
force_g(i,1),force_g(i,2),force_g(i,3),force_g(i,4),force_g(i,5),force_g(i,6));

end

A.39 print_truss_model.m
%
fprintf(fid, ’ ******* PRINTING MODEL DATA **************\n\n\n’);

% Print Nodal coordinates
%
fprintf(fid, ’------------------------------------------------------ \n’);
fprintf(fid, ’Number of nodes: %g\n’, nnd );
fprintf(fid, ’Number of elements: %g\n’, nel );
fprintf(fid, ’Number of nodes per element: %g\n’, nne );
fprintf(fid, ’Number of degrees of freedom per node: %g\n’, nodof);
fprintf(fid, ’Number of degrees of freedom per element: %g\n\n\n’, eldof);
%
%
%
fprintf(fid, ’------------------------------------------------------ \n’);
fprintf(fid, ’Node X Y \n’);
for i=1:nnd
fprintf(fid,’ %g, %07.2f, %07.2f\n’,i, geom(i,1), geom(i,2));
end
fprintf(fid,’\n’);
%
% Print element connectivity
%
fprintf(fid, ’------------------------------------------------------ \n’);
fprintf(fid, ’Element Node_1 Node_2 \n’);
for i=1:nel
fprintf(fid,’ %g, %g, %g\n’,i, connec(i,1), connec(i,2));
end
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fprintf(fid,’\n’);
%
% Print element property
%
fprintf(fid, ’------------------------------------------------------ \n’);
fprintf(fid, ’Element E A \n’);
for i=1:nel
fprintf(fid,’ %g, %g, %g\n’,i, prop(i,1), prop(i,2));
end
fprintf(fid,’\n’);
%
% Print Nodal freedom
%
fprintf(fid, ’------------------------------------------------------ \n’);
fprintf(fid, ’Node disp_U disp_V\n’);
for i=1:nnd
fprintf(fid,’ %g, %g, %g\n’,i, nf(i,1), nf(i,2));
end
fprintf(fid,’\n’);
%
% Print Nodal loads
%
fprintf(fid, ’------------------------------------------------------ \n’);
fprintf(fid, ’Node load_X load_Y\n’);
for i=1:nnd
fprintf(fid,’ %g, %07.2f, %07.2f\n’,i, load(i,1), load(i,2));
end
%
fprintf(fid, ’------------------------------------------------------ \n’);
fprintf(fid,’\n’);
fprintf(fid,’Total number of active degrees of freedom, n = %g\n’,n);
fprintf(fid,’\n’);
%

A.40 print_truss_results.m
%
fprintf(fid, ’-------------------------------------------------------- \n’);
fprintf(fid, ’ \n\n\n ******* PRINTING ANALYSIS RESULTS **************\n\n\n’);
%
%
%
% Print global force vector
%
fprintf(fid, ’------------------------------------------------------ \n’);
fprintf(fid,’Global force vector F \n’);
fprintf(fid,’ %g\n’,F);
fprintf(fid,’\n’);
%
%
% Print Displacement solution vector
%
fprintf(fid, ’------------------------------------------------------ \n’);
fprintf(fid,’Displacement solution vector: delta \n’);
fprintf(fid,’ %8.5f\n’,delta);
fprintf(fid,’\n’);
%
% Print nodal displacements
%
fprintf(fid, ’------------------------------------------------------ \n’);
fprintf(fid, ’Nodal displacements \n’);
fprintf(fid, ’Node disp_X disp_Y\n’);
for i=1:nnd
fprintf(fid,’ %g, %8.5f, %8.5f\n’,i, node_disp(i,1), node_disp(i,2));
end
fprintf(fid,’\n’);
%
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% Print Members actions
%
fprintf(fid, ’------------------------------------------------------ \n’);
fprintf(fid, ’Members actions \n’);
fprintf(fid, ’element force action\n’);
for i=1:nel

if force(i) > 0
fprintf(fid,’ %g, %9.2f, %s\n’,i, force(i), ’Tension’);

else
fprintf(fid,’ %g, %9.2f, %s\n’,i, force(i), ’Compression’);

end
end

A.41 Q4_mesh.m
% This module generates a mesh of linear quadrilateral elements
%
global nnd nel nne nodof eldof n
global geom connec dee nf Nodal_loads
global Length Width NXE NYE X_origin Y_origin dhx dhy
%
%
nnd = 0;
k = 0;
for i = 1:NXE

for j=1:NYE
k = k + 1;
n1 = j + (i-1)*(NYE + 1);
geom(n1,:) = [(i-1)*dhx - X_origin (j-1)*dhy - Y_origin ];
n2 = j + i*(NYE+1);
geom(n2,:) = [i*dhx - X_origin (j-1)*dhy - Y_origin ];
n3 = n1 + 1;
geom(n3,:) = [(i-1)*dhx - X_origin j*dhy - Y_origin ];
n4 = n2 + 1;
geom(n4,:) = [i*dhx- X_origin j*dhy - Y_origin ];
nel = k;
connec(nel,:) = [n1 n2 n4 n3];
nnd = n4;
end

end
%

A.42 Q8_mesh.m
% This function module a mesh of 8-nodded quadrilateral elements
%
global nnd nel nne nodof eldof n
global geom connec dee nf Nodal_loads
global Length Width NXE NYE X_origin Y_origin dhx dhy
%
%
nnd = 0;
k = 0;
for i = 1:NXE

for j=1:NYE
k = k + 1;

%
n1 = (i-1)*(3*NYE+2)+2*j - 1;
n2 = i*(3*NYE+2)+j - NYE - 1;
n3 = i*(3*NYE+2)+2*j-1;
n4 = n3 + 1;
n5 = n3 + 2;
n6 = n2 + 1;
n7 = n1 + 2;
n8 = n1 + 1;

%
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geom(n1,:) = [(i-1)*dhx - X_origin (j-1)*dhy - Y_origin ];
geom(n3,:) = [i*dhx - X_origin (j-1)*dhy - Y_origin ];
geom(n2,:) = [(geom(n1,1)+geom(n3,1))/2 (geom(n1,2)+geom(n3,2))/2];
geom(n5,:) = [i*dhx- X_origin j*dhy - Y_origin ];
geom(n4,:) = [(geom(n3,1)+ geom(n5,1))/2 (geom(n3,2)+ geom(n5,2))/2];
geom(n7,:) = [(i-1)*dhx - X_origin j*dhy - Y_origin ];
geom(n6,:) = [(geom(n5,1)+ geom(n7,1))/2 (geom(n5,2)+ geom(n7,2))/2];
geom(n8,:) = [(geom(n1,1)+ geom(n7,1))/2 (geom(n1,2)+ geom(n7,2))/2];

%
nel = k;
nnd = n5;
connec(k,:) = [n1 n2 n3 n4 n5 n6 n7 n8];
end

A.43 Stresses_at_nodes_axi.m
function[ZX, ZY, Z_THETA, ZT]=Stresses_at_nodes_axi(SIGMA)
%
% This function averages the stresses at the nodes
%
global nnd nel nne geom connec
%
for k = 1:nnd

sigx = 0. ;sigy = 0.; sig_theta = 0.; tau = 0.;
ne = 0;
for iel = 1:nel;

for jel=1:nne;
if connec(iel,jel) == k;

ne=ne+1;
sigx = sigx+SIGMA(iel,1);
sigy = sigy + SIGMA(iel,2);
sig_theta = sig_theta + SIGMA(iel,3);
tau = tau + SIGMA(iel,4);

end
end

end
ZX(k,1) = sigx/ne;
ZY(k,1) = sigy/ne;
ZT(k,1)=tau/ne;
Z_THETA(k,1) = sig_theta/ne;

end

A.44 Stresses_at_nodes_Q4.m
function[ZX, ZY, ZT, Z1, Z2]=Stresses_at_nodes_Q4(SIGMA)
%
% This function averages the stresses at the nodes
%
%
global nnd nel nne geom connec XIG YIG NXE NYE
%
for k = 1:nnd

sigx = 0. ;sigy = 0.; tau = 0.;
ne = 0;
for iel = 1:nel;

for jel=1:nne;
if connec(iel,jel) == k;

ne=ne+1;
sigx = sigx+SIGMA(iel,1);
sigy = sigy + SIGMA(iel,2);
tau = tau + SIGMA(iel,3);

end
end

end
ZX(k,1) = sigx/ne;
ZY(k,1) = sigy/ne;
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ZT(k,1)=tau/ne;
Z1(k,1)= ((sigx+sigy)/2 + sqrt(((sigx+sigy)/2)^2 +tau^2))/ne;
Z2(k,1)= ((sigx+sigy)/2 - sqrt(((sigx+sigy)/2)^2 +tau^2))/ne;

end

A.45 Stresses_at_nodes_Q8.m
function[ZX, ZY, ZT, Z1, Z2]=Stresses_at_nodes_Q8(SIGMA)
%
% This function averages the stresses at the nodes
%
global nnd nel nne geom connec
%
for k = 1:nnd

sigx = 0. ;sigy = 0.; tau = 0.;
ne = 0;
for iel = 1:nel;

for jel=1:nne;
if connec(iel,jel) == k;

ne=ne+1;
sigx = sigx+SIGMA(iel,1);
sigy = sigy + SIGMA(iel,2);
tau = tau + SIGMA(iel,3);

end
end

end
ZX(k,1) = sigx/ne;
ZY(k,1) = sigy/ne;
ZT(k,1)=tau/ne;
Z1(k,1)= ((sigx+sigy)/2 + sqrt(((sigx+sigy)/2)^2 +tau^2))/ne;
Z2(k,1)= ((sigx+sigy)/2 - sqrt(((sigx+sigy)/2)^2 +tau^2))/ne;

end

A.46 T3_mesh.m
% This module generates a mesh of triangular elements
%
global nnd nel nne nodof eldof n
global geom connec dee nf Nodal_loads
global Length Width NXE NYE X_origin Y_origin dhx dhy
%
nnd = 0;
k = 0;
for i = 1:NXE

for j=1:NYE
k = k + 1;
n1 = j + (i-1)*(NYE + 1);
geom(n1,:) = [(i-1)*dhx - X_origin (j-1)*dhy - Y_origin ];
n2 = j + i*(NYE+1);
geom(n2,:) = [i*dhx - X_origin (j-1)*dhy - Y_origin ];
n3 = n1 + 1;
geom(n3,:) = [(i-1)*dhx - X_origin j*dhy - Y_origin ];
n4 = n2 + 1;
geom(n4,:) = [i*dhx- X_origin j*dhy - Y_origin ];
nel = 2*k;
m = nel -1;
connec(m,:) = [n1 n2 n3];
connec(nel,:) = [n2 n4 n3];
nnd = n4;

end
end
%
for i=1:nel

x =[geom(connec(i,1),1) ; geom(connec(i,2),1); geom(connec(i,3),1)];
y =[geom(connec(i,1),2) ; geom(connec(i,2),2); geom(connec(i,3),2)];

end
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A.47 T6_mesh.m
% This module generates a mesh of the linear strain triangular element
%
global nnd nel geom connec XIG YIG
global Length Width NXE NYE X_origin Y_origin dhx dhy
%
%
nnd = 0;
k = 0;
for i = 1:NXE

for j=1:NYE
k = k + 1;
n1 = (2*j-1) + (2*i-2)*(2*NYE+1) ;
n2 = (2*j-1) + (2*i-1)*(2*NYE+1);
n3 = (2*j-1) + (2*i)*(2*NYE+1);
n4 = n1 + 1;
n5 = n2 + 1;
n6 = n3 + 1 ;
n7 = n1 + 2;
n8 = n2 + 2;
n9 = n3 + 2;
%
geom(n1,:) = [(i-1)*dhx - X_origin (j-1)*dhy - Y_origin];
geom(n2,:) = [((2*i-1)/2)*dhx - X_origin (j-1)*dhy - Y_origin ];
geom(n3,:) = [i*dhx - X_origin (j-1)*dhy - Y_origin ];
geom(n4,:) = [(i-1)*dhx - X_origin ((2*j-1)/2)*dhy - Y_origin ];
geom(n5,:) = [((2*i-1)/2)*dhx - X_origin ((2*j-1)/2)*dhy - Y_origin ];
geom(n6,:) = [i*dhx - X_origin ((2*j-1)/2)*dhy - Y_origin ];
geom(n7,:) = [(i-1)*dhx - X_origin j*dhy - Y_origin];
geom(n8,:) = [((2*i-1)/2)*dhx - X_origin j*dhy - Y_origin];
geom(n9,:) = [i*dhx - X_origin j*dhy - Y_origin];
%
nel = 2*k;
m = nel -1;
connec(m,:) = [n1 n2 n3 n5 n7 n4];
connec(nel,:) = [n3 n6 n9 n8 n7 n5];
max_n = max([n1 n2 n3 n4 n5 n6 n7 n8 n9]);
if(nnd <= max_n); nnd = max_n; end;
%
% XIN and YIN are two vectors that holds the coordinates X and Y
% of the grid necessary for the function contourf (XIN,YIN, stress)
%
XIG(2*i-1) = geom(n1,1); XIG(2*i) = geom(n2,1); XIG(2*i+1) = geom(n3,1);
YIG(2*j-1) = geom(n1,2); YIG(2*j) = geom(n4,2); YIG(2*j+1) = geom(n7,2);

end
end
%

A.48 truss_C.m
function[C] = truss_C(i)
%
% This function forms the transformation between
% local and global coordinates
%
global geom connec
%
% retrieve the nodes of element i
%
node_1=connec(i,1);
node_2=connec(i,2);
%
% Retrieve the x and y coordinates of nodes 1 and 2
%
x1=geom(node_1,1); y1=geom(node_1,2);
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x2=geom(node_2,1); y2=geom(node_2,2);
%
% Evaluate the angle that the member makes with the
% global axis X
%
if(x2-x1)==0

if(y2>y1)
theta=2*atan(1);

else
theta=-2*atan(1);

end
else

theta=atan((y2-y1)/(x2-x1));
end
%
% Construct the transformation matrix
%
C = [cos(theta) -sin(theta) 0 0 ; ...

sin(theta) cos(theta) 0 0 ; ...
0 0 cos(theta) -sin(theta) ; ...
0 0 sin(theta) cos(theta) ];

%
%%%%%%%%%%%%%%%% end function truss_C %%%%%%%%%%%%%

A.49 truss_g.m
function[g] = truss_g(i)
%
% This function forms the steering vector for element i
%
global connec nf
%
% retrieve the nodes of element i
%
node_1=connec(i,1);
node_2=connec(i,2);
%
% Form the steering vector from element’s degrees
% of freedom
%
g=[nf(node_1,1); nf(node_1,2); nf(node_2,1);nf(node_2,2)];
%
%%%%%%%%%%%%%%%%%% end function truss_g %%%%%%%%%%%%%%%%

A.50 truss_kl.m
function[kl] = truss_kl(i)
%
% This function forms the element stiffness matrix
% in local coordinates
%
global geom connec prop
%
% retrieve the nodes of element i
%
node_1=connec(i,1);
node_2=connec(i,2);
%
%
% Retrieve the x and y coordinates of nodes 1 and 2
%
x1=geom(node_1,1); y1=geom(node_1,2);
x2=geom(node_2,1); y2=geom(node_2,2);
%
% Evaluate length of element i
%
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L = sqrt((x2-x1)^2 + (y2-y1)^2);
%
% Retrieve section properties of element i
%
E= prop(i,1); A=prop(i,2);
%
% Calculate element stiffness matrix in its
% local coordinates
%
kl=[E*A/L 0 -E*A/L 0 ; ...
0 0 0 0 ; ...
-E*A/L 0 E*A/L 0 ; ...
0 0 0 0 ];
%
%%%%%%%%%%%%%%%%%% End function truss_kl%%%%%%%%%%%%
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FIGURE B.1 Common beam loadings.
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Appendix C: Index Notation and
Transformation Laws for Tensors

C.1 INDEX NOTATION FOR VECTORS AND TENSORS

C.1.1 VECTOR AND TENSOR COMPONENTS

Operations on Cartesian components of vectors and tensors can be expressed very efficiently and
clearly using index notation. The index notation refers to vectors or tensors by their general term,
with the indices ranging over the dimensions of the vector or the tensor.

Let �u be a vector and a a second-order tensor defined in a Cartesian basis. Using matrix notation,
they can be represented by their Cartesian components as

�u =
⎧⎨
⎩

u1

u2

u3

⎫⎬
⎭ a =

⎛
⎝a11 a12 a13

a21 a22 a23

a31 a32 a33

⎞
⎠ (C.1)

Using index notation, the vector �u and the tensor a can be expressed in a compact manner as

�u = ui a = aij (C.2)

C.1.2 EINSTEIN SUMMATION CONVENTIONS

Under the rules of index notation, if an index is repeated in a product of vectors or tensors, summation
is implied over the range of the repeated index. For example, for a range from 1 to 3, the following
expressions can be developed as

aibi = a1b1 + a2b2 + a3b3 (C.3)

ci = aikxk =
⎧⎨
⎩

a11x1 + a12x2 + a13x3

a21x1 + a22x2 + a23x3

a31x1 + a32x2 + a33x3

⎫⎬
⎭ (C.4)

λ = aijbij = a1b1 + a1b2 + a1b3 + a2b1 + a2b2 + a2b3 + a3b1 + a3b2 + a3b3 (C.5)

cij = aikbkj = ai1b1j + ai2b2j + ai3b3j ≡ [C] = [A] × [B] (C.6)

aij = bji ≡ [A] = [B]T (C.7)

Expression (C.6) is equivalent to the product of two matrices.

447
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C.1.3 THE KRONECKER DELTA AND THE PERMUTATION SYMBOL

In the index notation, two special quantities, the Kronecker delta and the permutation factor, must
be defined for use in the various operations involving vectors and tensors.

The Kronecker δij is defined as

δij =
{

1 i = j
0 i �= j

}
(C.8)

Thus

δ11 = δ22 = δ33 = 1 (C.9)

and

δ12 = δ21 = δ13 = δ31 = δ23 = δ32 = 0 (C.10)

In matrix notation, the equivalent of the Kronecker delta is the identity matrix.
The Kronecker delta can be used as a substitution operator, since

δijbj = δi1b1 + δi2b2 + δi3b3 = bi (C.11)

δijaik = δ1ja1k + δ2ja2k + δ3ja3k = ajk (C.12)

The permutation factor eijk is defined as

eijk =
⎧⎨
⎩

1 i, j, k = 1, 2, 3 2, 3, 1 3, 1, 2
−1 i, j, k = 3, 2, 1 2, 1, 3 1, 3, 2

0 otherwise

⎫⎬
⎭ (C.13)

We can observe that

eijk = ejki = ekij = −eikj = −ekji = ejik (C.14)

ekki = 0 (C.15)

eijkeimn = δjmδkn − δjnδmk (C.16)

Using these definitions, the cross-product of two vectors can be written as

�u × �v = eijkujvk (C.17)

C.1.4 RULES OF INDEX NOTATION

There three important rules in index notation, which are as follows:

• An index may occur either once or twice in a given term. When an index occurs unrepeated
in a term, that index is understood to take all the values of its range. Unrepeated indices are
known as free indices. Free indices appearing on each term must agree.

• When an index appears twice in a term, that index is understood to take all the values of
its range and the resulting terms summed. Repeated indices are often referred to as dummy
indices.
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• Free and dummy indices may be changed without altering the meaning of the equation. The
number and the location of the free indices reveal the exact tensorial rank of the quantity
expressed.

The following expressions are valid

Aikxk, AijBikCnk, ai = AkiBkjxj + Cikuk

but

xi = Aij, xj = aikuk, xj = AkiBkjuj

are meaningless.

C.2 COORDINATE TRANSFORMATIONS

C.2.1 TRANSFORMATION LAWS FOR VECTORS

Given two arbitrary coordinate systems �e1, �e2, �e3 and �e′
1, �e′

2, �e′
3 in a three-dimensional Euclidean

space. Any change of coordinate system is characterized by a Jacobian matrix [J], which helps
express the vectors of the new base in terms of the ones in the old base:

[J] =
∥∥∥∂e′

i

∂ej

∥∥∥ =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂e′
1

∂e1

∂e′
1

∂e2

∂e′
1

∂e3

∂e′
2

∂e1

∂e′
2

∂e2

∂e′
2

∂e3

∂e′
3

∂e1

∂e′
3

∂e2

∂e′
3

∂e3

⎤
⎥⎥⎥⎥⎥⎥⎦

(C.18)

If the Jacobian does not vanish, expression (C.18) possesses a unique inverse.
The coordinates systems represented by �e1, �e2, �e3 and �e′

1, �e′
2, �e′

3 are completely general and may
be any curvilinear or Cartesian systems. In the case of Cartesian systems as shown in Figure C.1,
the Jacobian takes the form of a constant tensor lij or, because of the identity between second-order

é3

é2

e3

e2

e1
é1

FIGURE C.1 Transformation of coordinates.
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tensors and square matrices, a constant matrix [Q], which is called the transition matrix from the old
basis to the new basis. In index notation, the transformation takes the form

e′
i = lijej (C.19)

with

lij = cos
(
�e′

i, �ej

)
=

⎛
⎝l11 l12 l13

l21 l22 l23

l31 l32 l33

⎞
⎠ (C.20)

In matrix notation, it takes the form:

{e′} = [Q]{e} (C.21)

with

[Q] =
[

cos
(
�e′

i, �ej

)]
=

⎡
⎣Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

⎤
⎦ (C.22)

Example: Anticlockwise Rotation around the Axis 3

In the case of an anticlockwise rotation as shown in Figure C.2, the relation between the bases is
written as

�e′
1 = cos(ψ) �e1 + sin(ψ) �e2 + 0 × �e3 (C.23)

�e′
2 = − sin(ψ) �e1 + cos(ψ) �e2 + 0 × �e3 (C.24)

�e′
3 = 0 × �e1 + 0 × �e2 + 1 × �e3 (C.25)

The matrix [Q] takes the form

[Q] =
⎡
⎣ cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0
0 0 1

⎤
⎦ (C.26)

e3 é3

é2

e2

e1

ψ

é1

FIGURE C.2 Rotation around the third axis.
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The matrix [Q] is an orthonormal matrix and has the following properties:

[Q]T = [Q]−1 (C.27)

In index notation, the relationship (C.27) is given as

likljk = δij (C.28)

Note that in index notation, and by analogy to matrix notation, you cannot write (C.28) as lji lij = δij.
This is completely erroneous in index notation since the repeated indices in the first term imply
summation; therefore, the first term is a scalar and the second a tensor.

Given an arbitrary vector �v represented in the base ( �e1, �e2, �e3) as

�v = v1 �e1 + v2 �e2 + v3 �e3 = vj �ej (C.29)

The same vector can also be represented in the base ( �e′
1, �e′

2, �e′
3) as

�v = v′
1
�e′
1 + v′

2
�e′
2 + v′

3
�e′
3 = v′

i
�e′

i (C.30)

Using Equation (C.19), Equation (C.30) is rewritten as:

�v = v′
i lij �ej (C.31)

Comparing Equations (C.29) and (C.31) reveal that the vector components in the primed and
unprimed basis are related by

vj = v′
i lij = lijv′

i (C.32)

in matrix notation

{v} = [Q]T{v′} (C.33)

The inverse transformation is defined as

v′
i = vilij (C.34)

or in matrix notation as

{v′} = [Q]{v} (C.35)

C.2.2 TRANSFORMATION LAWS FOR TENSORS

Given two arbitrary vectors �u and �v represented in the base ( �e1, �e2, �e3) respectively as

�u = u1 �e1 + u2 �e2 + u3 �e3 (C.36)

�v = v1 �e1 + v2 �e2 + v3 �e3 (C.37)

Now suppose the existence of a linear application between the two vectors defined by �u = f (�u)

and expressed in index notation as

ui = aijvj (C.38)
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or in matrix notation as

{u} = [a]{v} (C.39)

In another base, say ( �e′
1, �e′

2, �e′
3), the vectors �u and �v are expressed as

�u = u′
1
�e′
1 + u′

2
�e′
2 + u′

3
�e′
3 (C.40)

�v = v′
1
�e′
1 + v′

2
�e′
2 + v3

�e′
3 (C.41)

and the relationship �u = f (�u) is expressed in index notation as

u′
i = a′

ijv
′
j (C.42)

and in matrix notation as

{u′} = [a′]{v′} (C.43)

The problem is to find a relationship between the tensors a and a′.
Using (C.32), Equation (C.38) is rewritten as

ui = aijlmjv
′
m = lmjaijv

′
m (C.44)

Substituting in (C.44) for ui using (C.32) leads to

lkiu
′
k = aijlmjv

′
m = lmjaijv

′
m (C.45)

Multiplying both sides of the equations by lni, and noting that lnilki = δnk, Equation C.46 becomes

δnku
′
k = lkilmjaijv

′
m (C.46)

That is,

u′
k = lkilmjaijv

′
m (C.47)

Comparing (C.42) and (C.47), it follows

a′
km = lkilmjaij (C.48)

Using matrix notation, and after substituting Equation (C.33), Equation (C.39) becomes

{u} = [a][Q]T{v′} (C.49)

Replacing the vector {u} by [Q]T{u′}, Equation (C.49) becomes

[Q]T{u′} = [a][Q]T{v′} (C.50)

and premultiplying both sides of the equation by the matrix [Q], and noting [Q][Q]T = [I], yields
the result

{u′} = [Q][a][Q]T{v′} (C.51)

Comparing Equations (C.43) and (C.51) yields the result

[a′] = [Q][a][Q]T (C.52)

The inverse relation is expressed as

[a] = [Q]T[a′][Q] (C.53)
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